Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 166(1): 44-56, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25033826

ABSTRACT

Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesium- and phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes involved in the PAO/phyllobilin pathway are known; however, the mechanism of dephytylation remains uncertain. During Arabidopsis (Arabidopsis thaliana) leaf senescence, phytol hydrolysis is catalyzed by PHEOPHYTINASE (PPH), which is specific for pheophytin (i.e. magnesium-free chlorophyll). By contrast, in fruits of different Citrus spp., chlorophyllase, hydrolyzing phytol from chlorophyll, was shown to be active. Here, we enlighten the process of chlorophyll breakdown in tomato (Solanum lycopersicum), both in leaves and fruits. We demonstrate the activity of the PAO/phyllobilin pathway and identify tomato PPH (SlPPH), which, like its Arabidopsis ortholog, was specifically active on pheophytin. SlPPH localized to chloroplasts and was transcriptionally up-regulated during leaf senescence and fruit ripening. SlPPH-silencing tomato lines were impaired in chlorophyll breakdown and accumulated pheophytin during leaf senescence. However, although pheophytin transiently accumulated in ripening fruits of SlPPH-silencing lines, ultimately these fruits were able to degrade chlorophyll like the wild type. We conclude that PPH is the core phytol-hydrolytic enzyme during leaf senescence in different plant species; however, fruit ripening involves other hydrolases, which are active in parallel to PPH or are the core hydrolases in fruits. These hydrolases remain unidentified, and we discuss the question of whether chlorophyllases might be involved.


Subject(s)
Chloroplasts/enzymology , Fruit/physiology , Pheophytins/metabolism , Plant Leaves/physiology , Solanum lycopersicum/physiology , Amino Acid Sequence , Molecular Sequence Data , Oxygenases/metabolism , Phytol/metabolism , Plant Proteins/metabolism
2.
Mol Plant Microbe Interact ; 26(11): 1302-11, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23945001

ABSTRACT

Syringolin A (SylA), a virulence factor secreted by certain strains of the plant pathogen Pseudomonas syringae pv. syringae, is an irreversible proteasome inhibitor imported by plant cells by an unknown transport process. Here, we report that functional expression in yeast of all 17 members of the Arabidopsis oligopeptide transporter family revealed that OLIGOPEPTIDE TRANSPORTER1 (OPT1), OPT2, YELLOW STRIPE-LIKE3 (YSL3), YSL7, and YSL8 rendered yeast cells sensitive to growth inhibition by SylA to different degrees, strongly indicating that these proteins mediated SylA uptake into yeast cells. The greatest SylA sensitivity was conferred by YSL7 and YSL8 expression. An Arabidopsis ysl7 mutant exhibited strongly reduced SylA sensitivity in a root growth inhibition assay and in leaves of ysl7 and ysl8 mutants, SylA-mediated quenching of salicylic-acid-triggered PATHOGENESIS-RELATED GENE1 transcript accumulation was greatly reduced compared with the wild type. These results suggest that YSL7 and YSL8 are major SylA uptake transporters in Arabidopsis. Expression of a YSL homolog of bean, the host of the SylA-producing P. syringae pv. syringae B728a, in yeast also conferred strong SylA sensitivity. Thus, YSL transporters, which are thought to be involved in metal homeostasis, have been hijacked by bacterial pathogens for SylA uptake into host cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Membrane Transport Proteins/metabolism , Peptides, Cyclic/metabolism , Plant Diseases/microbiology , Pseudomonas syringae/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Biological Transport , Gene Expression , Genes, Reporter , Membrane Transport Proteins/genetics , Mutation , Oligopeptides/metabolism , Organ Specificity , Peptides, Cyclic/pharmacology , Phylogeny , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Recombinant Fusion Proteins , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/metabolism , Seedlings/microbiology , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...