Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(2): e13397, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36846655

ABSTRACT

The present study focuses on investigating the expression of thrombospondin-1 (TSP-1), a natural inhibitor of neovascularization. Immunofluorescent staining was used to detect the expression of TSP-1 in rabbit corneal tissue with vascularization induced by limbectomy. TSP-1 was detected in healthy and Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) grafted rabbit corneas. TSP-1 was not detected in diseased corneas. Rabbit and human primary oral mucosal and corneal epithelial cells were cultured and treated with proteasome inhibitor (PI) in vitro. Changes in the expression of TSP-1, HIF-1 alpha and 2 alpha, VEGF-A, and VEGF receptor were analyzed by Western blotting. Neovascularization developed in rabbits' corneas as early as 1 month after limbectomy and was stable for at least 3 months. HIF-1 alpha and VEGF-A expression was reduced in CAOMECS grafted corneas, as compared to sham corneas. While TSP-1 expression was decreased in injured corneas, it was expressed in CAOMECS grafted corneas, but still less expressed compared to healthy corneas. PI treatment, of human oral mucosal and corneal epithelial cells increased TSP-1 expression and reduced VEGF-A expression. The results showed that TSP-1 expression was lost in injured corneal surface and that CAOMECS grafting restored TSP-1 expression to certain extent. Proteasome inhibition treatment increased TSP-1 and decreased VEGF-A expression in human oral mucosal and corneal epithelial cells. The result suggests that corneal neovascularization could be managed with the inhibition of the proteasome after CAOMECS grafting and increase corneal transparency.

2.
Int J Mol Sci ; 23(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35409392

ABSTRACT

PURPOSE: The purpose of the present study is to investigate the expression of aldehyde dehydrogenases (ALDHs) in rabbit corneas with limbal stem cell deficiency (LSCD) and corneas treated with cultured autologous oral mucosa epithelial cell sheet CAOMECS designed to reconstruct the ocular surface with LSCD. METHODS: New Zealand white rabbit autologous oral mucosal epithelial cells were isolated from a buccal biopsy and cultured to be grafted back onto corneas of rabbit model of LSCD. Immunofluorescent staining and Western blot analysis were used to compare the expression of ALDH1A1 and ALDH1A3 in healthy, LSCD-diseased, CAOMECS treated corneas. Human oral mucosal and corneal epithelial cells (OMECS and CECs) were cultured and treated with retinoic acid (RA) to further investigate the expression of ALDHs. RESULTS: In healthy corneas, ALDH1A1 and ALDH1A3 were markedly expressed in basal cells of corneal epithelium. In LSCD diseased corneas, ALDH1A1 and ALDH1A3 were markedly expressed in the conjunctivalized apical epithelial cells, the goblet cells, and the stroma. CAOMECS grafted corneas showed a decreased expression of ALDHs as compared to LSCD diseased corneas. Western blot analysis confirmed the up regulation of ALDH1A1 and ALDH1A3 expression in LSCD-diseased corneal epithelial cells. CAOMECS expressed low levels of ALDH1A1 and ALDH1A3, as compared to diseased CECs (D-CEC). When ALDH1A3 was up regulated by retinoic acid treatment in OMECS, Pax-6 expression was down regulated, suggesting a decrease in regenerative capacity when ALDH enzymes are up regulated. CONCLUSIONS: These findings report for the first time the up regulation of ALDH1A1 and ALDH1A3 in rabbit corneas with LSCD and document that CAOMECS grafting used to reconstruct corneal epithelium may reduce the expression levels of ALDH enzymes.


Subject(s)
Corneal Diseases , Limbus Corneae , Aldehydes/metabolism , Animals , Corneal Diseases/metabolism , Epithelial Cells/metabolism , Oxidoreductases/metabolism , Rabbits , Stem Cells/metabolism , Tretinoin/metabolism , Tretinoin/pharmacology
3.
Heliyon ; 4(12): e01012, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619956

ABSTRACT

PURPOSE: To understand the mechanism of corneal keratin expression and clearance in corneal epithelium with Limbal Stem Cell Deficiency (LSCD). The hypothesis is that LSCD-induced proteasome dysfunction is a contributing factor to keratin aggregation, causing corneal keratin aggresome (CKAGG) formation. METHOD: LSCD was surgically induced in rabbit corneas. LSCD corneal epithelial cells (D-CEC) were collected to investigate keratin K4 and K13 expression and CKAGG formation. Oral mucosal epithelial cells (OMECS) were isolated and cultured to study K4 and K13 expression. Cultured cells were treated with proteasome inhibitor to induce CKAGG formation. RESULTS: K4 and K13 were strongly expressed in D-CEC, with additional higher molecular weight bands of K4 and K13, suggesting CKAGG formation. Double staining of K4/K13 and ubiquitin showed co-localization of these keratins with ubiquitin in D-CEC. Proteasome inhibition also showed K4/K13 modification and accumulation in cultured OMECS, similar to D-CEC. Proteasome activation was then performed in cultured OMEC. There was no accumulation of keratins, and levels of unmodified keratins were found significantly reduced. CONCLUSION: Results showed an abnormal expression of K4 and K13 after LSCD-induced proteasome dysfunction, which coalesce to form CKAGG in Corneal Epithelial Cells (CEC). We propose that CKAGG formation may be one of the causative factors of morphological alterations in the injured corneal epithelium, and that CKAGG could potentially be cleared by enhancing proteasome activity.

4.
Ocul Surf ; 15(4): 749-758, 2017 10.
Article in English | MEDLINE | ID: mdl-28528957

ABSTRACT

PURPOSE: This study focuses on characterizing proteasomes in corneal epithelial cells (CEC) and in cultured autologous oral mucosal epithelial cell sheets (CAOMECS) used to regenerate the ocular surface. METHODS: Limbal stem cell deficiency (LSCD) was surgically induced in rabbit corneas. CAOMECS was engineered and grafted onto corneas with LSCD to regenerate the ocular surface. RESULTS: LSCD caused an increase in inflammatory cells in the ocular surface, an increase in the formation of immunoproteasomes (IPR), and a decrease in the formation of constitutive proteasome (CPR). Specifically, LSCD-diseased CEC (D-CEC) showed a decrease in the CPR chymotrypsin-like, trypsin-like and caspase-like activities, while healthy CEC (H-CEC) and CAOMECS showed higher activities. Quantitative analysis of IPR inducible subunit (B5i, B2i, and B1i) were performed and compared to CPR subunit (B5, B2, and B1) levels. Results showed that ratios B5i/B5, B2i/B2 and B1i/B1 were higher in D-CEC, indicating that D-CEC had approximately a two-fold increase in the amount of IPR compared to CAOMECS and H-CEC. Histological analysis demonstrated that CAOMECS-grafted corneas had a re-epithelialized surface, positive staining for CPR subunits, and weak staining for IPR subunits. In addition, digital quantitative measurement of fluorescent intensity showed that the CPR B5 subunit was significantly more expressed in CAOMECS-grafted corneas compared to non-grafted corneas with LSCD. CONCLUSION: CAOMECS grafting successfully replaced the D-CEC with oral mucosal epithelial cells with higher levels of CPR. The increase in constitutive proteasome expression is possibly responsible for the recovery and improvement in CAOMECS-grafted corneas.


Subject(s)
Epithelial Cells , Animals , Cells, Cultured , Corneal Diseases , Epithelium, Corneal , Limbus Corneae , Mouth Mucosa , Proteasome Endopeptidase Complex , Regeneration , Transplantation, Autologous
5.
J Ophthalmol ; 2016: 4805986, 2016.
Article in English | MEDLINE | ID: mdl-27777792

ABSTRACT

The role of E-cadherin in epithelial barrier function of cultured autologous oral mucosa epithelial cell sheet (CAOMECS) grafts was examined. CAOMECS were cultured on a temperature-responsive surface and grafted onto rabbit corneas with Limbal Stem Cell Deficiency (LSCD). E-cadherin levels were significantly higher in CAOMECS compared to normal and LSCD epithelium. Beta-catenin colocalized with E-cadherin in CAOMECS cell membranes while phosphorylated beta-catenin was significantly increased. ZO-1, occludin, and Cnx43 were also strongly expressed in CAOMECS. E-cadherin and beta-catenin localization at the cell membrane was reduced in LSCD corneas, while CAOMECS-grafted corneas showed a restoration of E-cadherin and beta-catenin expression. LSCD corneas did not show continuous staining for ZO-1 or for Cnx43, while CAOMECS-grafted corneas showed a positive expression of ZO-1 and Cnx43. Cascade Blue® hydrazide did not pass through CAOMECS. Because E-cadherin interactions are calcium-dependent, EGTA was used to chelate calcium and disrupt cell adhesion. EGTA-treated CAOMECS completely detached from cell culture surface, and E-cadherin levels were significantly decreased. In conclusion, E cadherin high expression contributed to CAOMECS tight and gap junction protein recruitment at the cell membrane, thus promoting cellular adhesion and a functional barrier to protect the ocular surface.

6.
Ocul Surf ; 13(2): 150-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25881998

ABSTRACT

This study investigates the therapeutic effects of carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) transplantation for experimentally induced severe rabbit limbal stem cell deficiency (LSCD). Buccal biopsies were performed and CAOMECS were cultured and transplanted onto diseased corneas. Six-month follow-up examinations indicated that three out of four corneas with CAOMECS grafts showed a decrease in superficial vascularization, while almost all the sham corneas did not show a similar decrease. H&E staining of corneas showed that CAOMECS transplantation reduced blood vessel invasion of central cornea, reduced lymphocyte infiltration and fibrotic tissue formation. DeltaNp63 stained markedly in the grafted cornea and to a lesser extent in the sham corneas. PCNA and Ki-67 staining were much greater in the sham corneas than in the grafted and normal corneas. K3 and K13 staining demonstrated that CAOMECS transplanted corneas had much more K3- and less K13- positive cells compared to the sham corneas. Muc5AC was decreased in the central region of grafted corneas. Very little alpha-smooth muscle actin (aSMA) staining was detected in grafted corneas, while there was a greater amount of aSMA staining in sham corneas. Staining for anti-angiogenic factor TIMP -3 was also increased, and pro-angiogenic factor MMP-3 was decreased in grafted corneas compared to sham corneas. Our results indicate that CAOMECS grafts resulted in improved epithelialization of the corneal surface and decreased vascularization and fibrosis of the diseased corneas.


Subject(s)
Burns, Chemical/surgery , Corneal Injuries/surgery , Epithelium, Corneal/surgery , Mouth Mucosa/transplantation , Plastic Surgery Procedures/methods , Stem Cell Transplantation/methods , Animals , Burns, Chemical/pathology , Cells, Cultured , Corneal Injuries/pathology , Disease Models, Animal , Epithelium, Corneal/injuries , Rabbits , Transplantation, Autologous
7.
Mol Genet Metab ; 90(2): 171-80, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17011223

ABSTRACT

Recombinant human alpha-L-iduronidase (Aldurazyme, laronidase) was approved as an enzyme replacement therapy for patients with the lysosomal storage disorder, mucopolysaccharidosis I (MPS I). In order to assess the long-term safety and efficacy of laronidase therapy, 5 of 10 patients in the original laronidase Phase 1/2 clinical trial were re-evaluated after 6 years of treatment. Lysosomal storage was further improved at 6 years (urinary glycosaminoglycans (GAG) excretion decreased 76%; mean liver size at 1.84% of body weight). Shoulder maximum range of motion was maintained or further increased and reached a mean 33.2 (R) and 25.0 (L) degrees gained in flexion and 34.0 (R) and 27.3 (L) degrees gained in extension. Sleep apnea was decreased in four of five patients and the airway size index improved. Cardiac disease evaluations showed no progression to heart failure or cor pulmonale but pre-existing significant valve disease did progress in some patients. Substantial growth was observed for the pre-pubertal patients, with a gain of 33 cm (27%) in height and a gain of 31 kg in weight (105%). In general, the evaluated patients reported an improved ability to perform normal activities of daily living. Overall these data represent the first evidence that laronidase can stabilize or reverse many aspects of MPS I disease during long-term therapy and that early treatment prior to the development of substantial cardiac and skeletal disease may lead to better outcomes.


Subject(s)
Iduronidase/therapeutic use , Mucopolysaccharidosis I/complications , Mucopolysaccharidosis I/drug therapy , Adult , Body Height/drug effects , Body Weight/drug effects , Central Nervous System Diseases/etiology , Child , Face/pathology , Female , Follow-Up Studies , Glycosaminoglycans/urine , Heart Diseases/drug therapy , Heart Diseases/etiology , Humans , Iduronidase/metabolism , Liver/pathology , Lysosomes/metabolism , Male , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...