Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Earth Space Sci ; 6(2): 294-310, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31008149

ABSTRACT

NASA's Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar mission which will produce near global (51.6°S to 51.6°N) maps of forest structure and above-ground biomass density during its 2-year mission. GEDI uses a waveform simulator for calibration of algorithms and assessing mission accuracy. This paper implements a waveform simulator, using the method proposed in Blair and Hofton (1999; https://doi.org/10.1029/1999GL010484), and builds upon that work by adding instrument noise and by validating simulated waveforms across a range of forest types, airborne laser scanning (ALS) instruments, and survey configurations. The simulator was validated by comparing waveform metrics derived from simulated waveforms against those derived from observed large-footprint, full-waveform lidar data from NASA's airborne Land, Vegetation, and Ice Sensor (LVIS). The simulator was found to produce waveform metrics with a mean bias of less than 0.22 m and a root-mean-square error of less than 5.7 m, as long as the ALS data had sufficient pulse density. The minimum pulse density required depended upon the instrument. Measurement errors due to instrument noise predicted by the simulator were within 1.5 m of those from observed waveforms and 70-85% of variance in measurement error was explained. Changing the ALS survey configuration had no significant impact on simulated metrics, suggesting that the ALS pulse density is a sufficient metric of simulator accuracy across the range of conditions and instruments tested. These results give confidence in the use of the simulator for the pre-launch calibration and performance assessment of the GEDI mission.

2.
Glob Chang Biol ; 24(3): 933-943, 2018 03.
Article in English | MEDLINE | ID: mdl-29284191

ABSTRACT

Tropical secondary forests (TSF) are a global carbon sink of 1.6 Pg C/year. However, TSF carbon uptake is estimated using chronosequence studies that assume differently aged forests can be used to predict change in aboveground biomass density (AGBD) over time. We tested this assumption using two airborne lidar datasets separated by 11.5 years over a Neotropical landscape. Using data from 1998, we predicted canopy height and AGBD within 1.1 and 10.3% of observations in 2009, with higher accuracy for forest height than AGBD and for older TSFs in comparison to younger ones. This result indicates that the space-for-time assumption is robust at the landscape-scale. However, since lidar measurements of secondary tropical forest are rare, we used the 1998 lidar dataset to test how well plot-based studies quantify the mean TSF height and biomass in a landscape. We found that the sample area required to produce estimates of height or AGBD close to the landscape mean is larger than the typical area sampled in secondary forest chronosequence studies. For example, estimating AGBD within 10% of the landscape mean requires more than thirty 0.1 ha plots per age class, and more total area for larger plots. We conclude that under-sampling in ground-based studies may introduce error into estimations of the TSF carbon sink, and that this error can be reduced by more extensive use of lidar measurements.


Subject(s)
Forests , Biomass , Carbon/metabolism , Carbon Sequestration , Databases, Factual , Time Factors
3.
PLoS One ; 7(1): e28922, 2012.
Article in English | MEDLINE | ID: mdl-22235254

ABSTRACT

BACKGROUND: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. METHODOLOGY AND PRINCIPAL FINDINGS: A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. CONCLUSION AND SIGNIFICANCE: Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.


Subject(s)
Animal Migration , Radar , Songbirds , Statistics as Topic/methods , Animals , Artificial Intelligence , Ecosystem , Time Factors , Trees
4.
Ecology ; 91(6): 1569-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20583698

ABSTRACT

A topic of recurring interest in ecological research is the degree to which vegetation structure influences the distribution and abundance of species. Here we test the applicability of remote sensing, particularly novel use of waveform lidar measurements, for quantifying the habitat heterogeneity of a contiguous northern hardwoods forest in the northeastern United States. We apply these results to predict the breeding habitat quality, an indicator of reproductive output of a well-studied Neotropical migrant songbird, the Black-throated Blue Warbler (Dendroica caerulescens). We found that using canopy vertical structure metrics provided unique information for models of habitat quality and spatial patterns of prevalence. An ensemble decision tree modeling approach (random forests) consistently identified lidar metrics describing the vertical distribution and complexity of canopy elements as important predictors of habitat use over multiple years. Although other aspects of habitat were important, including the seasonality of vegetation cover, the canopy structure variables provided unique and complementary information that systematically improved model predictions. We conclude that canopy structure metrics derived from waveform lidar, which will be available on future satellite missions, can advance multiple aspects of biodiversity research, and additional studies should be extended to other organisms and regions.


Subject(s)
Ecosystem , Songbirds/physiology , Spacecraft , Animal Migration , Animals , Breeding , New Hampshire , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...