Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 213: 107951, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844099

ABSTRACT

We have developed a behavioral paradigm to study volitional olfactory investigation in mice over several months. We placed odor ports in the wall of a standard cage that administer a neutral odorant stimulus when a mouse pokes its nose inside. Even though animals were fed and watered ad libitum, and sampling from the port elicited no outcome other than the delivery of an odor, mice readily sampled these stimuli hundreds of times per day. This self-paced olfactory investigation persisted for weeks with only modest habituation following the first day of exposure to a given set of odorants. If an unexpected odorant stimulus was administered at the port, the sampling rate increased transiently (in the first 20 min) by an order of magnitude and remained higher than baseline throughout the subsequent day, indicating learned implicit knowledge. Thus, this system may be used to study naturalistic olfactory learning over extended time scales outside of conventional task structures.

2.
Nat Biotechnol ; 42(1): 87-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36991112

ABSTRACT

Conventional genome engineering with CRISPR-Cas9 creates double-strand breaks (DSBs) that lead to undesirable byproducts and reduce product purity. Here we report an approach for programmable integration of large DNA sequences in human cells that avoids the generation of DSBs by using Type I-F CRISPR-associated transposases (CASTs). We optimized DNA targeting by the QCascade complex through protein design and developed potent transcriptional activators by exploiting the multi-valent recruitment of the AAA+ ATPase TnsC to genomic sites targeted by QCascade. After initial detection of plasmid-based integration, we screened 15 additional CAST systems from a wide range of bacterial hosts, identified a homolog from Pseudoalteromonas that exhibits improved activity and further increased integration efficiencies. Finally, we discovered that bacterial ClpX enhances genomic integration by multiple orders of magnitude, likely by promoting active disassembly of the post-integration CAST complex, akin to its known role in Mu transposition. Our work highlights the ability to reconstitute complex, multi-component machineries in human cells and establishes a strong foundation to exploit CRISPR-associated transposases for eukaryotic genome engineering.


Subject(s)
CRISPR-Cas Systems , Transposases , Humans , CRISPR-Cas Systems/genetics , Transposases/genetics , Plasmids , DNA , Genome , Gene Editing
3.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993517

ABSTRACT

Traditional genome-editing reagents such as CRISPR-Cas9 achieve targeted DNA modification by introducing double-strand breaks (DSBs), thereby stimulating localized DNA repair by endogenous cellular repair factors. While highly effective at generating heterogenous knockout mutations, this approach suffers from undesirable byproducts and an inability to control product purity. Here we develop a system in human cells for programmable, DSB-free DNA integration using Type I CRISPR-associated transposons (CASTs). To adapt our previously described CAST systems, we optimized DNA targeting by the QCascade complex through a comprehensive assessment of protein design, and we developed potent transcriptional activators by exploiting the multi-valent recruitment of the AAA+ ATPase, TnsC, to genomic sites targeted by QCascade. After initial detection of plasmid-based transposition, we screened 15 homologous CAST systems from a wide range of bacterial hosts, identified a CAST homolog from Pseudoalteromonas that exhibited improved activity, and increased integration efficiencies through parameter optimization. We further discovered that bacterial ClpX enhances genomic integration by multiple orders of magnitude, and we propose that this critical accessory factor functions to drive active disassembly of the post-transposition CAST complex, akin to its demonstrated role in Mu transposition. Our work highlights the ability to functionally reconstitute complex, multi-component machineries in human cells, and establishes a strong foundation to realize the full potential of CRISPR-associated transposons for human genome engineering.

4.
Nat Biotechnol ; 41(9): 1320-1331, 2023 09.
Article in English | MEDLINE | ID: mdl-36658342

ABSTRACT

The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Precision Medicine , Genome , Genomics , Gastrointestinal Microbiome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...