Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 552, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720028

ABSTRACT

Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities. Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species proxies). We assess between site differences in community diversity using beta-diversity and the partitioned components of species replacement and richness difference. Global total beta-diversity (dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal distance. Species replacement and richness difference patterns vary across biogeographic regions. Our findings support long-standing, general expectations of global biodiversity patterns. However, we also show that the underlying processes driving patterns may be regionally linked.


Subject(s)
Arthropods , Biodiversity , Animals , Arthropods/classification , Arthropods/physiology , Geography , Spatio-Temporal Analysis
2.
Sci Data ; 11(1): 561, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816458

ABSTRACT

Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.


Subject(s)
Air Microbiology , DNA, Fungal , Spores, Fungal , DNA, Fungal/analysis , Fungi/genetics , Fungi/classification , Biodiversity
3.
Microbiome ; 12(1): 9, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212738

ABSTRACT

BACKGROUND: Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS: Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS: Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.


Subject(s)
Cyanobacteria , Soil , Humans , Antarctic Regions , Phylogeny , Biodiversity , Soil Microbiology
4.
Front Microbiol ; 14: 1203216, 2023.
Article in English | MEDLINE | ID: mdl-37555066

ABSTRACT

Introduction: The Antarctic McMurdo Dry Valleys are geologically diverse, encompassing a wide variety of soil habitats. These environments are largely dominated by microorganisms, which drive the ecosystem services of the region. While altitude is a well-established driver of eukaryotic biodiversity in these Antarctic ice-free areas (and many non-Antarctic environments), little is known of the relationship between altitude and microbial community structure and functionality in continental Antarctica. Methods: We analysed prokaryotic and lower eukaryotic diversity from soil samples across a 684 m altitudinal transect in the lower Taylor Valley, Antarctica and performed a phylogenic characterization of soil microbial communities using short-read sequencing of the 16S rRNA and ITS marker gene amplicons. Results and Discussion: Phylogenetic analysis showed clear altitudinal trends in soil microbial composition and structure. Cyanobacteria were more prevalent in higher altitude samples, while the highly stress resistant Chloroflexota and Deinococcota were more prevalent in lower altitude samples. We also detected a shift from Basidiomycota to Chytridiomycota with increasing altitude. Several genera associated with trace gas chemotrophy, including Rubrobacter and Ornithinicoccus, were widely distributed across the entire transect, suggesting that trace-gas chemotrophy may be an important trophic strategy for microbial survival in oligotrophic environments. The ratio of trace-gas chemotrophs to photoautotrophs was significantly higher in lower altitude samples. Co-occurrence network analysis of prokaryotic communities showed some significant differences in connectivity within the communities from different altitudinal zones, with cyanobacterial and trace-gas chemotrophy-associated taxa being identified as potential keystone taxa for soil communities at higher altitudes. By contrast, the prokaryotic network at low altitudes was dominated by heterotrophic keystone taxa, thus suggesting a clear trophic distinction between soil prokaryotic communities at different altitudes. Based on these results, we conclude that altitude is an important driver of microbial ecology in Antarctic ice-free soil habitats.

5.
Genes (Basel) ; 14(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36980877

ABSTRACT

Free-living terrestrial mites (Acari) have persisted through numerous glacial cycles in Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region, East Antarctica, including Victoria Land and the Queen Maud Mountains (QMM), covering a latitudinal range of 72-85 °S, as well as Lauft Island near Mt. Siple (73 °S) in West Antarctica and Macquarie Island (54oS) in the sub-Antarctic. We assessed genetic diversity using mitochondrial cytochrome c oxidase subunit I gene sequences (COI-5P DNA barcode region), and also morphologically identified voucher specimens. We obtained 130 sequences representing four genera: Nanorchestes (n = 30 sequences), Stereotydeus (n = 46), Coccorhagidia (n = 18) and Eupodes (n = 36). Tree-based analyses (maximum likelihood) revealed 13 genetic clusters, representing as many as 23 putative species indicated by barcode index numbers (BINs) from the Barcode of Life Datasystems (BOLD) database. We found evidence for geographically-isolated cryptic species, e.g., within Stereotydeus belli and S. punctatus, as well as unique genetic groups occurring in sympatry (e.g., Nanorchestes spp. in QMM). Collectively, these data confirm high genetic divergence as a consequence of geographic isolation over evolutionary timescales. From a conservation perspective, additional targeted sampling of understudied areas in the Ross Sea region should be prioritised, as further diversity is likely to be found in these short-range endemic mites.


Subject(s)
Genetic Variation , Mites , Animals , Genetic Variation/genetics , Mites/genetics , Antarctic Regions , Phylogeny , Genetic Drift
6.
Sci Total Environ ; 871: 162137, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36775167

ABSTRACT

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Subject(s)
Ecosystem , Microbiota , Soil , Bacteria , Atmosphere , Temperature , Soil Microbiology
7.
mSystems ; 8(1): e0125422, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36719224

ABSTRACT

Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions.


Subject(s)
Biodiversity , Microbiota , Humans , Antarctic Regions , Ice Cover , Soil , Plants
8.
PeerJ ; 10: e14378, 2022.
Article in English | MEDLINE | ID: mdl-36389411

ABSTRACT

Lakes provide habitat for a diverse array of species and offer a wide range of ecosystem services for humanity. However, they are highly vulnerable as they are not only impacted by adverse actions directly affecting them, but also those on the surrounding environment. Improving knowledge on the processes responsible for community assembly in different biotic components will aid in the protection and restoration of lakes. Studies to date suggested a combination of deterministic (where biotic/abiotic factors act on fitness differences amongst taxa) and stochastic (where dispersal plays a larger factor in community assembly) processes are responsible for structuring biotic communities, but there is no consensus on the relative roles these processes play, and data is lacking for lakes. In the present study, we sampled different biotic components in 34 lakes located on the South Island of New Zealand. To obtain a holistic view of assembly processes in lakes we used metabarcoding to investigate bacteria in the sediment and surface waters, and eukaryotes in the sediment and two different size fractions of the water column. Physicochemical parameters were collected in parallel. Results showed that deterministic processes dominated the assembly of lake communities although the relative importance of variable and homogeneous selection differed among the biotic components. Variable selection was more important in the sediment (SSbact and SSeuks) and for the bacterioplankton (Pbact) while the assembly of the eukaryotic plankton (SPeuks, LPeuks) was driven more by homogeneous selection. The ease of human access to the lakes had a significant effect on lake communities. In particular, clade III of SAR11 and Daphnia pulex were only present in lakes with public access. This study provides insights into the distribution patterns of different biotic components and highlights the value in understanding the drivers of different biological communities within lakes.


Subject(s)
Lakes , Plankton , Humans , Lakes/microbiology , Plankton/microbiology , Ecosystem , Eukaryota , Bacteria/genetics
9.
Genome ; 65(8): 427-441, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35785969

ABSTRACT

Assessing genetic differentiation among natural populations can aid understanding of dispersal patterns and connectivity among habitats. Several molecular markers have become increasingly popular in determining population genetic structure for this purpose. Here, we compared the resolution of mitochondrial cytochrome c oxidase subunit I (COI) and nuclear single nucleotide polymorphism (SNP) markers for detecting population structure among stream insects at small spatial scales. Individuals of three endemic taxa-Coloburiscus humeralis (Ephemeroptera), Zelandobius confusus (Plecoptera), and Hydropsyche fimbriata (Trichoptera)-were collected from forested streams that flow across open pasture in the North Island of New Zealand. Both COI and SNP data indicated limited population structure across the study area, and small differences observed among these species were likely related to their putative dispersal abilities. For example, fine-scale genetic differentiation between and among neighbouring stream populations for H. fimbriata suggests that gene flow, and hence dispersal, may be more limited for this species relative to the others. Based on the generally similar results provided by both types of markers, we suggest that either COI or SNP markers can provide suitable initial estimates of fine-scale population genetic differentiation in stream insects.


Subject(s)
Genetics, Population , Rivers , Animals , DNA, Mitochondrial/genetics , Genetic Markers , Genetic Variation , Humans , Insecta/genetics , New Zealand
10.
mSystems ; 7(1): e0133021, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35040702

ABSTRACT

The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth.


Subject(s)
Microbiota , Soil , Soil/chemistry , Antarctic Regions , Soil Microbiology , Bacteria , Archaea , Metagenomics/methods
11.
Curr Res Insect Sci ; 2: 100046, 2022.
Article in English | MEDLINE | ID: mdl-36683955

ABSTRACT

Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.

12.
Ecol Evol ; 11(22): 15664-15682, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824781

ABSTRACT

We used DNA barcoding to assess the diversity and distribution of New Zealand's groundwater amphipods and isopods (Crustacea) and to determine whether biodiversity and endemism within tectonically active New Zealand are similar to those of more tectonically stable continents. Sixty-five wells were sampled in seven aquifers across four regions within the North and South islands of New Zealand, and resident invertebrates were morphologically identified and then assessed using sequencing of the mitochondrial DNA cytochrome c oxidase subunit one (COI) gene. Invertebrates were found in 54 wells. Of the 228 individual amphipods and isopods found in 36 of the wells, 154 individuals were successfully sequenced for COI (68% success rate) from 25 wells, with at least one well in each aquifer containing sequenced individuals. Of the 45 putative species identified using Barcode Index Numbers (BINs), 30 BINs (78% of all taxa and 83% of amphipods) were previously unrecorded. Substantial morphologically cryptic, species-level diversity was revealed, particularly within the amphipod Family Paraleptamphopidae. Similarly, one isopod taxon morphologically identified as Cruregens fontanus was assigned to five well-separated BINs based on COI sequences. Endemism appeared high, with all taxa regionally endemic; 87% of species were restricted to one aquifer and more than 50% restricted to one well. Non-saturated species accumulation curves indicated that, while additional sampling may increase the range of some currently identified taxa, additional range-restricted taxa are also likely to be discovered. Patterns of diversity and short-range endemism were similar to those found elsewhere, including locations which are more tectonically stable. The predominance of local endemism within New Zealand's groundwater fauna suggests that land-use activities and groundwater extraction require careful evaluation to minimize threats to groundwater biodiversity.

13.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34732568

ABSTRACT

Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.


Subject(s)
Desert Climate , Gases/metabolism , Ice Cover/microbiology , Microbiota , Soil Microbiology , Antarctic Regions , Autotrophic Processes , Biodiversity , Hydrogenase/metabolism , Metagenome , Oxidation-Reduction , Phototrophic Processes
14.
Proc Natl Acad Sci U S A ; 117(36): 22293-22302, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839321

ABSTRACT

During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca 5 My.


Subject(s)
Genetic Variation , Invertebrates/genetics , Soil , Animals , Antarctic Regions , Climate Change , Ice Cover , Seasons
15.
Insects ; 11(1)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936447

ABSTRACT

Accurate and cost-effective methods for tracking changes in arthropod communities are needed to develop integrative environmental monitoring programs in the Arctic. To date, even baseline data on their species composition at established ecological monitoring sites are severely lacking. We present the results of a pilot assessment of non-marine arthropod diversity in a middle arctic tundra area near Ikaluktutiak (Cambridge Bay), Victoria Island, Nunavut, undertaken in 2018 using DNA barcodes. A total of 1264 Barcode Index Number (BIN) clusters, used as a proxy for species, were recorded. The efficacy of widely used sampling methods was assessed. Yellow pan traps captured 62% of the entire BIN diversity at the study sites. When complemented with soil and leaf litter sifting, the coverage rose up to 74.6%. Combining community-based data collection with high-throughput DNA barcoding has the potential to overcome many of the logistic, financial, and taxonomic obstacles for large-scale monitoring of the Arctic arthropod fauna.

17.
Ecol Evol ; 9(8): 4969-4979, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31031958

ABSTRACT

AIM: To assess spatial patterns of genetic and species-level diversity for Namib Desert Collembola using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene sequences. LOCATION: Namib Desert gravel plains. TAXON: Collembola (springtails). METHODS: A total of 77 soil samples were collected along NE-SW (60 km) and E-W (160 km) transects from within a 4,000 km2 area of the Namib Desert gravel plains. We extracted 434 springtails from the 37 samples which contained Collembola and sequenced them at the COI gene locus. In the absence of specific taxonomic keys and previous genetic data for these taxa, we used Generalized Mixed Yule Coalescent (GMYC) analyses to provide putative species-level designations. RESULTS: We obtained 341 successful COI sequences, 175 of which were unique haplotypes. GMYC analyses identified 30 putative species, with up to 28% sequence divergence (uncorrected p-distance). The distribution of genetic variants was disjunct, with 97% of haplotypes and 70% of "GMYC species" found only at single sites. MAIN CONCLUSIONS: Dispersal events, although rare, may be facilitated by environmental events such as prevailing onshore winds or occasional flow of rainwater to the coast. We conclude that the high genetic diversity we observed is the result of ancient springtail lineages, patchy distribution of suitable habitats, and limited dispersal (gene flow) among habitable locations.

18.
Commun Biol ; 2: 62, 2019.
Article in English | MEDLINE | ID: mdl-30793041

ABSTRACT

Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained significant variations in biological complexity and identified landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of linkages among functional groups was essential for constructing the best-fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem.


Subject(s)
Arthropods/physiology , Cyanobacteria/physiology , Fungi/physiology , Nematoda/physiology , Rotifera/physiology , Tardigrada/physiology , Animals , Antarctic Regions , Arthropods/classification , Biodiversity , Cyanobacteria/classification , Ecosystem , Fungi/classification , Models, Statistical , Nematoda/classification , Rotifera/classification , Tardigrada/classification
19.
Commun Biol ; 2: 63, 2019.
Article in English | MEDLINE | ID: mdl-30793042

ABSTRACT

Abiotic factors are major determinants of soil animal distributions and their dominant role is pronounced in extreme ecosystems, with biotic interactions seemingly playing a minor role. We modelled co-occurrence and distribution of the three nematode species that dominate the soil food web of the McMurdo Dry Valleys (Antarctica). Abiotic factors, other biotic groups, and autocorrelation all contributed to structuring nematode species distributions. However, after removing their effects, we found that the presence of the most abundant nematode species greatly, and negatively, affected the probability of detecting one of the other two species. We observed similar patterns in relative abundances for two out of three pairs of species. Harsh abiotic conditions alone are insufficient to explain contemporary nematode distributions whereas the role of negative biotic interactions has been largely underestimated in soil. The future challenge is to understand how the effects of global change on biotic interactions will alter species coexistence.


Subject(s)
Arthropods/physiology , Nematoda/physiology , Rotifera/physiology , Soil/chemistry , Tardigrada/physiology , Animals , Antarctic Regions , Arthropods/classification , Biodiversity , Cyanobacteria/classification , Cyanobacteria/physiology , Ecosystem , Fungi/classification , Fungi/physiology , Models, Statistical , Nematoda/classification , Rotifera/classification , Soil/parasitology , Soil Microbiology , Tardigrada/classification
20.
Sci Rep ; 8(1): 17241, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30467395

ABSTRACT

The population genetic structure of toheroa (Paphies ventricosa), an Aotearoa (New Zealand) endemic surf clam, was assessed to determine levels of inter-population connectivity and test hypotheses regarding life history, habitat distribution and connectivity in coastal vs. estuarine taxa. Ninety-eight toheroa from populations across the length of New Zealand were sequenced for the mitochondrial cytochrome c oxidase I gene with analyses suggesting a population genetic structure unique among New Zealand marine invertebrates. Toheroa genetic diversity was high in Te Ika-a Maui (the North Island of New Zealand) but completely lacking in the south of Te Waipounamu (the South Island), an indication of recent isolation. Changes in habitat availability, long distance dispersal events or translocation of toheroa to southern New Zealand by Maori could explain the observed geographic distribution of toheroa and their genetic diversity. Given that early-Maori and their ancestors, were adept at food cultivation and relocation, the toheroa translocation hypothesis is plausible and may explain the disjointed modern distribution of this species. Translocation would also explain the limited success in restoring what may in some cases be ecologically isolated populations located outside their natural distributions and preferred niches.


Subject(s)
Bivalvia/genetics , Genetic Variation/genetics , Animals , DNA, Mitochondrial/genetics , Ecosystem , Electron Transport Complex IV/genetics , Genetics, Population/methods , Humans , Mitochondria/genetics , New Zealand , Population Groups
SELECTION OF CITATIONS
SEARCH DETAIL
...