Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(1): 299-306, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27982600

ABSTRACT

Interactions between fluorophores and plasmonic nanoparticles modify the fluorescence intensity, shape, and position of the observed emission pattern, thus inhibiting efforts to optically super-resolve plasmonic nanoparticles. Herein, we investigate the accuracy of localizing dye fluorescence as a function of the spectral and spatial separations between fluorophores (Alexa 647) and gold nanorods (NRs). The distance at which Alexa 647 interacts with NRs is varied by layer-by-layer polyelectrolyte deposition while the spectral separation is tuned by using NRs with varying localized surface plasmon resonance (LSPR) maxima. For resonantly coupled Alexa 647 and NRs, emission to the far field through the NR plasmon is highly prominent, resulting in underestimation of NR sizes. However, we demonstrate that it is possible to improve the accuracy of the emission localization when both the spectral and spatial separations between Alexa 647 and the LSPR are optimized.

2.
Nano Lett ; 16(10): 6497-6503, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27669356

ABSTRACT

Plasmonic clusters can exhibit Fano resonances with unique and tunable asymmetric line shapes, which arise due to the coupling of bright and dark plasmon modes within each multiparticle structure. These structures are capable of generating remarkably large local electromagnetic field enhancements and should give rise to high hot carrier yields relative to other plasmonic nanostructures. While the scattering properties of individual plasmonic Fano resonances have been characterized extensively both experimentally and theoretically, their absorption properties, critical for hot carrier generation, have not yet been measured. Here, we utilize single-particle absorption spectroscopy based on photothermal imaging to distinguish between the radiative and nonradiative properties of an individual Fano cluster. In observing the absorption spectrum of individual Fano clusters, we directly verify the theoretical prediction that while Fano interference may be prominent in scattering, it is completely absent in absorption. Our results provide microscopic insight into the nature of Fano interference in systems of coupled plasmonic nanoparticles and should pave the way for the optimization of hot carrier production using plasmonic Fano clusters.

3.
Anal Chem ; 88(20): 9926-9933, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27599237

ABSTRACT

Understanding and controlling protein adsorption on surfaces is critical to a range of biological and materials applications. Kinetic details that provide the equilibrium and nonequilibrium mechanisms are difficult to acquire. In this work, single-molecule fluorescence microscopy was used to study the adsorption of Alexa 555 labeled α-lactalbumin (α-LA) on two chemically identical but morphologically different polymer surfaces: flat and porous nylon-6,6 thin films. The adsorption kinetics of spatially resolved single molecule α-LA binding to nylon films were quantified by a monolayer adsorption model. The surface morphology of the porous nylon-6,6 films increased the number of adsorption sites but decreased the binding affinity compared to the flat films. Such single-molecule based kinetic studies may be extended to various protein-polymer interactions.


Subject(s)
Lactalbumin/chemistry , Nylons/chemistry , Adsorption , Fluorescence , Kinetics , Microscopy, Fluorescence/methods , Porosity , Rhodamines/chemistry , Sulfonic Acids/chemistry , Surface Properties , Thermodynamics
4.
ACS Nano ; 10(2): 2103-12, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26751094

ABSTRACT

The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Protein Corona/chemistry , Protein Corona/metabolism , Protein Unfolding , Adsorption , Humans , MCF-7 Cells
5.
Sci Adv ; 1(11): e1500988, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26665175

ABSTRACT

The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications.

6.
ACS Nano ; 9(7): 7072-9, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26165983

ABSTRACT

Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption.

7.
Nano Lett ; 15(5): 3041-7, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25849105

ABSTRACT

Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

8.
Chem Soc Rev ; 44(1): 40-57, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-24979351

ABSTRACT

This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles.


Subject(s)
Metal Nanoparticles/chemistry , Surface Plasmon Resonance , Microscopy, Atomic Force , Microscopy, Electron , Models, Theoretical , Optical Imaging
9.
ACS Nano ; 7(12): 11209-17, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24266755

ABSTRACT

We present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single-particle dark-field scattering and photoluminescence spectroscopy to access the homogeneous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single-particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ∼10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...