Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428643

ABSTRACT

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Subject(s)
Aurora Kinase A , Bile Duct Neoplasms , Cholangiocarcinoma , PTEN Phosphohydrolase , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Animals , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cholangiocarcinoma/etiology , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/etiology , Bile Duct Neoplasms/metabolism , Humans , Mice, Knockout , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Bile Ducts, Extrahepatic/pathology , Disease Models, Animal , Cholangitis/pathology , Cholangitis/etiology , Cholangitis/metabolism , Cholangitis/genetics , Signal Transduction
2.
Sci Rep ; 12(1): 12020, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835854

ABSTRACT

The frequent use of insecticides to manage soybean aphids, Aphis glycines (Hemiptera: Aphididae), in the United States has contributed to field-evolved resistance. Pyrethroid-resistant aphids have nonsynonymous mutations in the voltage-gated sodium channel (vgsc). We identified a leucine to phenylalanine mutation at position 1014 (L1014F) and a methionine to isoleucine mutation (M918I) of the A. glycines vgsc, both suspected of conferring knockdown resistance (kdr) to lambda-cyhalothrin. We developed molecular markers to identify these mutations in insecticide-resistant aphids. We determined that A. glycines which survived exposure to a diagnostic concentration of lambda-cyhalothrin and bifenthrin via glass-vial bioassays had these mutations, and showed significant changes in the resistance allele frequency between samples collected before and after field application of lambda-cyhalothrin. Thus, a strong association was revealed between aphids with L1014F and M918I vgsc mutations and survival following exposure to pyrethroids. Specifically, the highest survival was observed for aphids with the kdr (L1014F) and heterozygote super-kdr (L1014F + M918I) genotypes following laboratory bioassays and in-field application of lambda-cyhalothrin. These genetic markers could be used as a diagnostic tool for detecting insecticide-resistant A. glycines and monitoring the geographic distribution of pyrethroid resistance. We discuss how generating these types of data could improve our efforts to mitigate the effects of pyrethroid resistance on crop production.


Subject(s)
Aphids , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Aphids/genetics , Genetic Markers , Insecticide Resistance/genetics , Insecticides/pharmacology , Mutation , Phenotype , Pyrethrins/pharmacology , Glycine max , Voltage-Gated Sodium Channels/genetics
3.
BMC Genomics ; 22(1): 887, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895143

ABSTRACT

BACKGROUND: Pyramiding different resistance genes into one plant genotype confers enhanced resistance at the phenotypic level, but the molecular mechanisms underlying this effect are not well-understood. In soybean, aphid resistance is conferred by Rag genes. We compared the transcriptional response of four soybean genotypes to aphid feeding to assess how the combination of Rag genes enhanced the soybean resistance to aphid infestation. RESULTS: A strong synergistic interaction between Rag1 and Rag2, defined as genes differentially expressed only in the pyramid genotype, was identified. This synergistic effect in the Rag1/2 phenotype was very evident early (6 h after infestation) and involved unique biological processes. However, the response of susceptible and resistant genotypes had a large overlap 12 h after aphid infestation. Transcription factor (TF) analyses identified a network of interacting TF that potentially integrates signaling from Rag1 and Rag2 to produce the unique Rag1/2 response. Pyramiding resulted in rapid induction of phytochemicals production and deposition of lignin to strengthen the secondary cell wall, while repressing photosynthesis. We also identified Glyma.07G063700 as a novel, strong candidate for the Rag1 gene. CONCLUSIONS: The synergistic interaction between Rag1 and Rag2 in the Rag1/2 genotype can explain its enhanced resistance phenotype. Understanding molecular mechanisms that support enhanced resistance in pyramid genotypes could facilitate more directed approaches for crop improvement.


Subject(s)
Aphids , Animals , Aphids/genetics , Genotype , Glycine max/genetics
4.
Insect Biochem Mol Biol ; 124: 103364, 2020 09.
Article in English | MEDLINE | ID: mdl-32360957

ABSTRACT

Multiple biotypes of soybean aphid, Aphis glycines, occur in North America adapted for survival (virulence) on soybean, Glycine max, with one or more different resistance to A. glycines (Rag) traits. The degree of genome-wide variance between biotypes and the basis of virulence remains unknown, but the latter is hypothesized to involve secreted effector proteins. Between 167,249 and 217,750 single nucleotide polymorphisms (SNPs) were predicted from whole genome re-sequencing of A. glycines avirulent biotype 1 (B1) and virulent B2, B3 and B4 colony-derived iso-female lines when compared to the draft B1 genome assembly, Ag_bt1_v6.0. Differences in nucleotide diversity indices (π) estimated within 1000 bp sliding windows demonstrated that 226 of 353 (64.0%) regions most differentiated between B1 and ≥ 2 virulent biotypes, representing < 0.1% of the 308 Mb assembled genome size, are located on 15 unordered scaffolds. Furthermore, these 226 intervals were coincident and show a significant association with 326 of 508 SNPs with significant locus-by-locus FST estimates between biotype populations (r = 0.6271; F1,70 = 45.36, P < 0.001) and genes showing evidence of directions selection (πN/πS > 2.0; r = 0.6233; F1,70 = 50.20, P < 0.001). A putative secreted effector glycoprotein is encoded in proximity to genome intervals of low estimated π (putative selective sweep) within avirulent B1 compared to all three virulent biotypes. Additionally, SNPs are clustered in or in proximity to genes putatively involved in intracellular protein cargo transport and the regulation of secretion. Results of this study indicate that factors on a small number of scaffolds of the A. glycines genome may contribute to variance in virulence towards Rag traits in G. max.


Subject(s)
Aphids/genetics , Glycine max/genetics , Plant Defense Against Herbivory/genetics , Virulence/genetics , Animals , Aphids/pathogenicity , Biological Evolution , Genes, Plant , Genome, Insect , Genomics/methods , Herbivory , Pest Control , Plants , Whole Genome Sequencing
5.
Front Plant Sci ; 10: 310, 2019.
Article in English | MEDLINE | ID: mdl-30930925

ABSTRACT

Soybean aphids (Aphis glycines Matsumura) are specialized insects that feed on soybean (Glycine max) phloem sap. Transcriptome analyses have shown that resistant soybean plants mount a fast response that limits aphid feeding and population growth. Conversely, defense responses in susceptible plants are slower and it is hypothesized that aphids block effective defenses in the compatible interaction. Unlike other pests, aphids can colonize plants for long periods of time; yet the effect on the plant transcriptome after long-term aphid feeding has not been analyzed for any plant-aphid interaction. We analyzed the susceptible and resistant (Rag1) transcriptome response to aphid feeding in soybean plants colonized by aphids (biotype 1) for 21 days. We found a reduced resistant response and a low level of aphid growth on Rag1 plants, while susceptible plants showed a strong response consistent with pattern-triggered immunity. GO-term analyses identified chitin regulation as one of the most overrepresented classes of genes, suggesting that chitin could be one of the hemipteran-associated molecular pattern that triggers this defense response. Transcriptome analyses also indicated the phenylpropanoid pathway, specifically isoflavonoid biosynthesis, was induced in susceptible plants in response to long-term aphid feeding. Metabolite analyses corroborated this finding. Aphid-treated susceptible plants accumulated daidzein, formononetin, and genistein, although glyceollins were present at low levels in these plants. Choice experiments indicated that daidzein may have a deterrent effect on aphid feeding. Mass spectrometry imaging showed these isoflavones accumulate likely in the mesophyll cells or epidermis and are absent from the vasculature, suggesting that isoflavones are part of a non-phloem defense response that can reduce aphid feeding. While it is likely that aphid can initially block defense responses in compatible interactions, it appears that susceptible soybean plants can eventually mount an effective defense in response to long-term soybean aphid colonization.

6.
J Econ Entomol ; 112(3): 1428-1438, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30768167

ABSTRACT

Cultivation of aphid-resistant soybean varieties can reduce yield losses caused by soybean aphids. However, discovery of aphid biotypes that are virulent on resistant soybean greatly threatens sustained utilization of host plant resistance to control soybean aphids. The objective of this study was to identify and genetically characterize aphid resistant soybean accessions in a diverse collection of 308 plant introductions in maturity groups (MG) I and II. In large-scale screening experiments conducted in the greenhouse, we identified 12 soybean accessions (10 aphid-resistant and 2 moderately resistant), including nine previously not reported for resistance against soybean aphids. Three accessions (PI 578374, PI 612759C, and PI 603546A) and the Rag3 resistant check (PI 567543C) were susceptible when infested with a high initial aphid level but resistant when infested with a low initial aphid level, a phenomenon termed as density-dependent aphid resistance. Six accessions (PI 054854, PI 378663, PI 578374, PI 612759C, PI 540739, and PI 603546A) conferred antibiosis, five (PI 438031, PI 603337A, PI 612711B, PI 437950, and PI 096162) conferred both antibiosis and antixenosis, while one (PI 417513B) had neither when tested in no-choice and pairwise choice experiments. Molecular genotyping of the 12 accessions using single-nucleotide polymorphism (SNP) markers linked to known aphid resistance (Rag) genes revealed that PI 578374 and PI 540739 did not have any tested marker variants and could potentially carry unreported Rag genes. Genome-wide association analyses for MG I accessions identified genomic regions associated with aphid resistance on chromosomes 10 and 12 for each level of initial aphid colonization.


Subject(s)
Aphids , Animals , Antibiosis , Genome-Wide Association Study , Glycine , Glycine max
7.
Plant Biotechnol J ; 17(1): 252-263, 2019 01.
Article in English | MEDLINE | ID: mdl-29878511

ABSTRACT

Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs.


Subject(s)
Arabidopsis Proteins/genetics , Disease Resistance/genetics , Transcription Factors/genetics , Arabidopsis Proteins/physiology , Herbivory , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Glycine max/genetics , Glycine max/physiology , Transcription Factors/physiology
8.
Anal Chem ; 87(10): 5294-301, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25914940

ABSTRACT

Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant-pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice-bacterium and soybean-aphid were investigated as two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant-pest interactions. Specifically, salicylic acid and isoflavone based resistance was visualized in the soybean-aphid system and antibiotic diterpenoids in rice-bacterium interactions.


Subject(s)
Aphids/physiology , Glycine max/parasitology , Host-Parasite Interactions , Host-Pathogen Interactions , Oryza/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Aphids/chemistry , Oryza/chemistry , Glycine max/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...