Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Comp Neurol ; 530(1): 6-503, 2022 01.
Article in English | MEDLINE | ID: mdl-34525221

ABSTRACT

Increasing interest in studies of prenatal human brain development, particularly using new single-cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular-resolution digital anatomical atlases for prenatal human brain at postconceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl-stained sections covering brain-wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining, and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains, respectively, at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, segmentation, targeting, imaging, and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.


Subject(s)
Atlases as Topic , Brain/growth & development , Entorhinal Cortex/growth & development , Hippocampus/growth & development , Animals , Female , Humans , Pregnancy
2.
Science ; 360(6389): 660-663, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29748285

ABSTRACT

Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Atlases as Topic , Databases, Genetic , Gene Expression Profiling , Humans , Prognosis
4.
J Comp Neurol ; 524(16): 3127-481, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27418273

ABSTRACT

Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.


Subject(s)
Anatomy, Artistic , Brain/anatomy & histology , Adult , Brain/diagnostic imaging , Brain/metabolism , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neurofilament Proteins/metabolism , Parvalbumins/metabolism
5.
Cereb Cortex ; 25(2): 433-49, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24014670

ABSTRACT

The neocortex contains diverse populations of excitatory neurons segregated by layer and further definable by their specific cortical and subcortical projection targets. The current study describes a systematic approach to identify molecular correlates of specific projection neuron classes in mouse primary somatosensory cortex (S1), using a combination of in situ hybridization (ISH) data mining, marker gene colocalization, and combined retrograde labeling with ISH for layer-specific marker genes. First, we identified a large set of genes with specificity for each cortical layer, and that display heterogeneous patterns within those layers. Using these genes as markers, we find extensive evidence for the covariation of gene expression and projection target specificity in layer 2/3, 5, and 6, with individual genes labeling neurons projecting to specific subsets of target structures. The combination of gene expression and target specificity imply a great diversity of projection neuron classes that is similar to or greater than that of GABAergic interneurons. The covariance of these 2 phenotypic modalities suggests that these classes are both discrete and genetically specified.


Subject(s)
Neurons/cytology , Neurons/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Animals , Atlases as Topic , Data Mining , Gene Expression/physiology , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Inbred C57BL , Neural Pathways/cytology , Neural Pathways/physiology , Neuronal Tract-Tracers
6.
Neuron ; 83(2): 309-323, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24952961

ABSTRACT

To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).


Subject(s)
Brain Mapping/methods , Brain/growth & development , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Animals , Gene Expression , Mice
7.
Nature ; 508(7495): 207-14, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695228

ABSTRACT

Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.


Subject(s)
Brain/anatomy & histology , Brain/cytology , Connectome , Animals , Atlases as Topic , Axons/physiology , Cerebral Cortex/cytology , Corpus Striatum/cytology , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Neuroanatomical Tract-Tracing Techniques , Thalamus/cytology
8.
J Comp Neurol ; 522(9): 1989-2012, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24639291

ABSTRACT

As an anterograde neuronal tracer, recombinant adeno-associated virus (AAV) has distinct advantages over the widely used biotinylated dextran amine (BDA). However, the sensitivity and selectivity of AAV remain uncharacterized for many brain regions and species. To validate this tracing method further, AAV (serotype 1) was systematically compared with BDA as an anterograde tracer by injecting both tracers into three cortical and 15 subcortical regions in C57BL/6J mice. Identical parameters were used for our sequential iontophoretic injections, producing injections of AAV that were more robust in size and in density of neurons infected compared with those of BDA. However, these differences did not preclude further comparison between the tracers, because the pairs of injections were suitably colocalized and contained some percentage of double-labeled neurons. A qualitative analysis of projection patterns showed that the two tracers behave very similarly when injection sites are well matched. Additionally, a quantitative analysis of relative projection intensity for cases targeting primary motor cortex (MOp), primary somatosensory cortex (SSp), and caudoputamen (CP) showed strong agreement in the ranked order of projection intensities between the two tracers. A detailed analysis of the projections of two brain regions (SSp and MOp) revealed many targets that have not previously been described in the mouse or rat. Minor retrograde labeling of neurons was observed in all cases examined, for both AAV and BDA. Our results show that AAV has actions equivalent to those of BDA as an anterograde tracer and is suitable for analysis of neural circuitry throughout the mouse brain.


Subject(s)
Biotin/analogs & derivatives , Brain/anatomy & histology , Dependovirus , Dextrans , Fluorescent Dyes , Neuroanatomical Tract-Tracing Techniques , Neuronal Tract-Tracers , Animals , Cell Count , Immunohistochemistry , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Fluorescence , Neural Pathways/anatomy & histology , Neurons/cytology , Photomicrography , Sensitivity and Specificity
9.
Nature ; 489(7416): 391-399, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22996553

ABSTRACT

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Brain/anatomy & histology , Brain/metabolism , Gene Expression Profiling , Transcriptome/genetics , Adult , Animals , Brain/cytology , Calbindins , Databases, Genetic , Dopamine/metabolism , Health , Hippocampus/cytology , Hippocampus/metabolism , Humans , In Situ Hybridization , Internet , Macaca mulatta/anatomy & histology , Macaca mulatta/genetics , Male , Mice , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Oligonucleotide Array Sequence Analysis , Post-Synaptic Density/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , S100 Calcium Binding Protein G/genetics , Species Specificity
10.
Mamm Genome ; 23(9-10): 539-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22832508

ABSTRACT

Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).


Subject(s)
Atlases as Topic , Brain/embryology , Brain/growth & development , Gene Expression , Mice/genetics , Spinal Cord/embryology , Spinal Cord/growth & development , Animals
11.
Cell ; 149(2): 483-96, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22500809

ABSTRACT

Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ∼1,000 genes important for neural functions by in situ hybridization at a cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene's expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, and in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain.


Subject(s)
Gene Expression Profiling , Neocortex/metabolism , Temporal Lobe/metabolism , Visual Cortex/metabolism , Adult , Animals , Gene Expression Regulation , Humans , Mice , Neocortex/cytology , Neurons/metabolism , Species Specificity , Temporal Lobe/cytology , Visual Cortex/cytology
12.
Proc Natl Acad Sci U S A ; 107(44): 19049-54, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20956311

ABSTRACT

Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs.


Subject(s)
Brain/metabolism , Gene Expression Regulation/physiology , Animals , Brain/cytology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , In Situ Hybridization , Mice , Species Specificity
13.
Mol Syst Biol ; 5: 252, 2009.
Article in English | MEDLINE | ID: mdl-19308092

ABSTRACT

Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrP(C)) to disease-causing PrP(Sc) isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain-prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrP(Sc) replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches.


Subject(s)
Prion Diseases/genetics , Systems Biology/methods , Animals , Astrocytes/metabolism , Astrocytes/pathology , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Oligonucleotide Array Sequence Analysis , PrPSc Proteins/metabolism , Time Factors
14.
Nat Neurosci ; 12(3): 356-62, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19219037

ABSTRACT

Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea).


Subject(s)
Brain Chemistry/genetics , Brain Mapping/methods , Brain/anatomy & histology , Brain/physiology , Gene Expression Profiling , Gene Expression Regulation/physiology , Age Factors , Animals , Gene Expression Profiling/methods , Genome/physiology , Image Processing, Computer-Assisted/methods , Mice , Mice, Inbred C57BL , Multigene Family
15.
J Pharmacol Exp Ther ; 329(2): 558-70, 2009 May.
Article in English | MEDLINE | ID: mdl-19179540

ABSTRACT

The solute carrier (Slc) superfamily is a major group of membrane transport proteins present in mammalian cells. Although Slc transporters play essential and diverse roles in the central nervous system, the localization and function of the vast majority of Slc genes in the mammalian brain are largely unknown. Using high-throughput in situ hybridization data generated by the Allen Brain Atlas, we systematically and quantitatively analyzed the spatial and cellular distribution of 307 Slc genes, which represent nearly 90% of presently known mouse Slc genes, in the adult C57BL/6J mouse brain. Our analysis showed that 252 (82%) of the 307 Slc genes are present in the brain, and a large proportion of these genes were detected at low to moderate expression levels. Evaluation of 20 anatomical brain subdivisions demonstrated a comparable level of Slc gene complexity but significant difference in transcript enrichment. The distribution of the expressed Slc genes was diverse, ranging from near-ubiquitous to highly localized. Functional annotation in 20 brain regions, including the blood-brain and blood-cerebral spinal fluid (CSF) barriers, suggests major roles of Slc transporters in supporting brain energy utilization, neurotransmission, nutrient supply, and CSF production. Furthermore, hierarchical cluster analysis revealed intricate Slc expression patterns associated with neuroanatomical organization. Our studies also revealed Slc genes present within defined brain microstructures and described the putative cell types expressing individual Slc genes. These results provide a useful resource for investigators to explore the roles of Slc genes in neurophysiological and pathological processes.


Subject(s)
Brain/metabolism , Gene Expression Profiling , Membrane Transport Proteins/genetics , Multigene Family , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/cytology , Mice , Mice, Inbred C57BL , Neurons/metabolism
16.
Hum Mol Genet ; 16 Spec No. 2: R209-19, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17911164

ABSTRACT

The growing number of publicly available databases of murine gene expression arising from genomic-scale transcriptome/proteome profiling projects allows open access to information about genes potentially involved in diseases and disorders of the brain. The use of various methodologies by myriad projects provides complementary types of information, ranging from easily quantifiable microarray data for gross brain regions, to transcript tag analysis and proteomic characterization. One mode of gene expression analysis that has recently been widely adopted is the utilization of colorimetric in situ hybridization. This approach is adaptable for high throughput production, and provides a reproducible, scaleable platform for large datasets. The Allen Brain Atlas in particular has utilized this technology to produce a genomic-scale anatomical digital atlas of gene expression in the adult male mouse brain. The availability of global datasets with cellular level spatial resolution, which can be easily parsed due to accessible informatics-derived image analysis tools, can provide both high level and detailed insights into gene regulation. This article reviews various gene expression profiling projects in the mouse brain, how these data sets are increasingly used to complement other studies and applications of these datasets to further understanding of neurological disease.


Subject(s)
Brain/metabolism , Gene Expression , Animals , Autistic Disorder/genetics , Brain/anatomy & histology , Data Interpretation, Statistical , Databases, Genetic , Epilepsy/genetics , Gene Expression Profiling , Humans , Male , Mice , Schizophrenia/genetics
17.
J Neurosci ; 27(33): 8826-35, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17699664

ABSTRACT

GPR54 is a G-protein-coupled receptor, which binds kisspeptins and is widely expressed throughout the brain. Kisspeptin-GPR54 signaling has been implicated in the regulation of pubertal and adulthood gonadotropin-releasing hormone (GnRH) secretion, and mutations or deletions of GPR54 cause hypogonadotropic hypogonadism in humans and mice. Other reproductive roles for kisspeptin-GPR54 signaling, including the regulation of developmental GnRH secretion or sexual behavior in adults, have not yet been explored. Using adult wild-type (WT) and GPR54 knock-out (KO) mice, we first tested whether kisspeptin-GPR54 signaling is necessary for male and female sexual behaviors. We found that hormone-replaced gonadectomized GPR54 KO males and females displayed appropriate gender-specific adult sexual behaviors. Next, we examined whether GPR54 signaling is required for proper display of olfactory-mediated partner preference behavior. Testosterone-treated WT males preferred stimulus females rather than males, whereas similarly treated WT females and GPR54 KO males showed no preference for either sex. Because olfactory preference is sexually dimorphic and organized during development by androgens, we assessed whether GPR54 signaling is essential for sexual differentiation of other sexually dimorphic traits. Interestingly, adult testosterone-treated GPR54 KO males displayed "female-like" numbers of tyrosine hydroxylase-immunoreactive and Kiss1 mRNA-containing neurons in the anteroventral periventricular nucleus and likewise possessed fewer motoneurons in the spino-bulbocavernosus nucleus than did WT males. Our findings indicate that kisspeptin-GPR54 signaling is not required for male or female copulatory behavior, provided there is appropriate adulthood hormone replacement. However, GPR54 is necessary for proper male-like development of several sexually dimorphic traits, likely by regulating GnRH-mediated androgen secretion during "critical windows" in perinatal development.


Subject(s)
Brain/metabolism , Receptors, G-Protein-Coupled/physiology , Sex Differentiation/physiology , Sexual Behavior, Animal/physiology , Signal Transduction/physiology , Analysis of Variance , Animals , Behavior, Animal/physiology , Brain/cytology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Gonadotropin-Releasing Hormone/metabolism , Humans , Kisspeptins , Luteinizing Hormone/blood , Male , Mice , Mice, Knockout , Neurons/classification , Neurons/drug effects , Neurons/metabolism , Proteins/genetics , Proteins/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, Kisspeptin-1 , Sex Characteristics , Sex Differentiation/drug effects , Sex Differentiation/genetics , Sexual Behavior, Animal/drug effects , Signal Transduction/drug effects , Testosterone/pharmacology , Tumor Suppressor Proteins/pharmacology , Tyrosine 3-Monooxygenase/metabolism
18.
Pharmacol Biochem Behav ; 86(1): 8-20, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17257664

ABSTRACT

The neuropeptide galanin has been implicated in anxiety-related behaviors, cognition, analgesia, and feeding in rodents. Neuromodulatory actions of galanin are mediated by three G-protein coupled receptors, GalR1, GalR2, and GalR3. The present study investigates the role of the GalR2 receptor by evaluating behavioral phenotypes of mice with a targeted mutation in the GalR2 gene. A three-tiered behavioral phenotyping approach first examined control measures of general health, body weight, neurological reflexes, sensory abilities and motor function. Mice were then assessed on several tests for cognitive and anxiety-like behaviors. GalR2 null mutants and heterozygotes were not significantly different from wildtype littermates on two cognitive tests previously shown to be sensitive to galanin manipulation: acquisition of the Morris water maze spatial task, and trace cued and contextual fear conditioning, an emotional learning and memory task. Two independent cohorts of GalR2 null mutant mice demonstrated an anxiogenic-like phenotype in the elevated plus-maze. No genotype differences were detected on several other measures of anxiety-like behavior. The discovery of an anxiogenic phenotype specific to the elevated plus-maze, similar to findings in GalR1 null mutants, highlights the potential therapeutic efficacy of targeting GalR1 and GalR2 receptors in treating anxiety disorders.


Subject(s)
Anxiety/genetics , Anxiety/psychology , Receptor, Galanin, Type 2/genetics , Receptor, Galanin, Type 2/physiology , Animals , Body Weight/physiology , Conditioning, Psychological/physiology , Exploratory Behavior/physiology , Fear/physiology , Fear/psychology , Female , Genotype , Health , Heterozygote , Male , Maze Learning/physiology , Mice , Mice, Knockout , Movement/physiology , Pain/genetics , Pain/psychology , Pain Measurement , Phenotype , Postural Balance/physiology , Reflex/physiology , Sensation/physiology , Stress, Psychological/genetics , Stress, Psychological/psychology
19.
Nature ; 445(7124): 168-76, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17151600

ABSTRACT

Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.


Subject(s)
Brain/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genome/genetics , Animals , Brain/anatomy & histology , Brain/cytology , Computational Biology , Genomics , Hippocampus/anatomy & histology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Mol Cell Biol ; 26(24): 9352-63, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17030627

ABSTRACT

Neuromedin U (NMU) is a highly conserved neuropeptide with a variety of physiological functions mediated by two receptors, peripheral NMUR1 and central nervous system NMUR2. Here we report the generation and phenotypic characterization of mice deficient in the central nervous system receptor NMUR2. We show that behavioral effects, such as suppression of food intake, enhanced pain response, and excessive grooming induced by intracerebroventricular NMU administration were abolished in the NMUR2 knockout (KO) mice, establishing a causal role for NMUR2 in mediating NMU's central effects on these behaviors. In contrast to the NMU peptide-deficient mice, NMUR2 KO mice appeared normal with regard to stress, anxiety, body weight regulation, and food consumption. However, the NMUR2 KO mice showed reduced pain sensitivity in both the hot plate and formalin tests. Furthermore, facilitated excitatory synaptic transmission in spinal dorsal horn neurons, a mechanism by which NMU stimulates pain, did not occur in NMUR2 KO mice. These results provide significant insights into a functional dissection of the differential contribution of peripherally or centrally acting NMU system. They suggest that NMUR2 plays a more significant role in central pain processing than other brain functions including stress/anxiety and regulation of feeding.


Subject(s)
Feeding Behavior/physiology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Pain/genetics , Perception/physiology , Receptors, Neurotransmitter/deficiency , Receptors, Neurotransmitter/genetics , Stress, Physiological/genetics , Animals , Anxiety/genetics , Female , Male , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Pain/physiopathology , Receptors, Neurotransmitter/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...