Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(3): e0194167, 2018.
Article in English | MEDLINE | ID: mdl-29558491

ABSTRACT

Flower visiting Eristalis hoverflies feed on nectar and pollen and are known to rely on innate colour preferences. In addition to a preference for visiting yellow flowers, the flies possess an innate proboscis reflex elicited by chemical as well as yellow colour stimuli. In this study we show that the flies' proboscis reflex is only triggered by yellow colour stimuli and not altered by conditioning to other colours. Neither in absolute nor in differential conditioning experiments the flies learned to associate other colours than yellow with reward. Even flies that experienced only blue nutrients during the first four days after hatching could not be trained to extend the proboscis towards other colours than yellow. The natural targets of the visually elicited proboscis reflex are yellow pollen and yellow anthers. One consequence of our findings is that flowers might advertise nectar and pollen rewards for Eristalis hoverflies by a yellow colour hue of nectar guides, nectaries, stamens or pollen. Alternatively, flowers might protect their pollen against Eristalis by displaying other pollen colours than yellow or direct flies by yellow pollen-mimicking floral guides towards nectar resources. Testing the proboscis extension of various hoverfly species in the field showed that only Eristalis hoverflies possess the proboscis reflex elicited by yellow colour hues.


Subject(s)
Diptera/physiology , Flowers , Learning/physiology , Reflex/physiology , Animals
2.
Cell ; 173(2): 456-469.e16, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576453

ABSTRACT

Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Oxygenases/metabolism , Pipecolic Acids/metabolism , Plant Immunity/drug effects , Arabidopsis/enzymology , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Gas Chromatography-Mass Spectrometry , Lysine/metabolism , Oomycetes/pathogenicity , Oxygenases/genetics , Pipecolic Acids/analysis , Pipecolic Acids/pharmacology , Plant Leaves/enzymology , Plant Leaves/immunology , Plant Leaves/metabolism , Pseudomonas syringae/pathogenicity , Transaminases/genetics , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...