Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 42, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486283

ABSTRACT

Glycolate is produced by microalgae under photorespiratory conditions and has the potential for sustainable organic carbon production in biotechnology. This study explores the glycolate production balance in Chlamydomonas reinhardtii, using a custom-built 10-L flat panel bioreactor with sophisticated measurements of process factors such as nutrient supply, gassing, light absorption and mass balances. As a result, detailed information regarding carbon and energy balance is obtained to support techno-economic analyses. It is shown how nitrogen is a crucial element in the biotechnological process and monitoring nitrogen content is vital for optimum performance. Moreover, the suitable reactor design is advantageous to efficiently adjust the gas composition. The oxygen content has to be slightly above 30% to induce photorespiration while maintaining photosynthetic efficiency. The final volume productivity reached 27.7 mg of glycolate per litre per hour, thus, the total process capacity can be calculated to 13 tonnes of glycolate per hectare per annum. The exceptional volume productivity of both biomass and glycolate production is demonstrated, and consequently can achieve a yearly CO2 sequestration rate of 35 tonnes per hectare. Although the system shows such high productivity, there are still opportunities to enhance the achieved volume productivity and thus exploit the biotechnological potential of glycolate production from microalgae.

2.
J Biotechnol ; 381: 76-85, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38190849

ABSTRACT

The physiology of different Escherichia coli stains was analyzed for growth with glycolate as a potentially promising sustainable sole source of carbon and energy. Different E. coli strains showed large differences regarding lag phases after provision of glycolate. Whereas E. coli W showed fast adaptation, E. coli BW25113, JM101, and BL21 (DE3) needed extensive time for adaption (up to 30 generations) until the attainable µmax was reached, which, at 30 °C, amounted to 0.20-0.25 h-1 for all strains. The overexpression of genes encoding glycolate degradation did neither overcome the need for adaptation of E. coli BL21 (DE3) nor improve growth of E. coli W. Rather, high level expression of proteins involved in uptake and initial degradation steps had an adverse effect on growth. Overall, the results show a promising capacity of E. coli strains for growth on glycolate.


Subject(s)
Carbon , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Carbon/metabolism , Glycolates/metabolism
3.
Stem Cell Res ; 65: 102961, 2022 12.
Article in English | MEDLINE | ID: mdl-36402078

ABSTRACT

Induced pluripotent stem (iPS) cell lines have wide valuable applications in experimental research, including developmental, pathological, and drug screening studies. Using integration-free episomal plasmids, we have generated a new iPS cell line from a 26-year-old healthy male donor. Characterization of the established cell line confirmed the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.


Subject(s)
Cell Line , Male , Humans , Adult
4.
Int J Mol Sci ; 23(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36012452

ABSTRACT

DNA methylation profiling has become a promising approach towards identifying biomarkers of neuropsychiatric disorders including autism spectrum disorder (ASD). Epigenetic markers capture genetic risk factors and diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathologies. We analysed the differential methylation profile of a regulatory region of the GAD1 gene using cerebral organoids generated from induced pluripotent stem cells (iPSCs) from adults with a diagnosis of ASD and from age- and gender-matched healthy individuals. Both groups showed high levels of methylation across the majority of CpG sites within the profiled GAD1 region of interest. The ASD group exhibited a higher number of unique DNA methylation patterns compared to controls and an increased CpG-wise variance. We detected six differentially methylated CpG sites in ASD, three of which reside within a methylation-dependent transcription factor binding site. In ASD, GAD1 is subject to differential methylation patterns that may not only influence its expression, but may also indicate variable epigenetic regulation among cells.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adult , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , DNA Methylation , Epigenesis, Genetic , Humans , Organoids
5.
Mol Psychiatry ; 27(9): 3749-3759, 2022 09.
Article in English | MEDLINE | ID: mdl-35618886

ABSTRACT

The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.


Subject(s)
Autism Spectrum Disorder , Biological Phenomena , Humans , Organoids , Autism Spectrum Disorder/genetics , Proteomics , Proteome/genetics , Phenotype , Energy Metabolism
6.
Prog Mol Biol Transl Sci ; 173: 355-375, 2020.
Article in English | MEDLINE | ID: mdl-32711817

ABSTRACT

Autism spectrum disorder (ASD) is a set of pervasive neurodevelopmental disorders. The causation is multigenic in most cases, which makes it difficult to model the condition in vitro. Advances in pluripotent stem cell technology has made it possible to generate in vitro models of human brain development. Induced pluripotent stem cells (iPSCs) can be generated from somatic cells and have the ability to differentiate to all of the body's cells. This chapter aims to give an overview of the iPSC technology for generating neural cells and cerebral organoids as models for neurodevelopment and how these models are utilized in the study of ASD. The combination of iPSC technology and the genetic modification tool CRISPR/Cas9 is described, and current limitations and future perspectives of iPSC technology is discussed.


Subject(s)
Autism Spectrum Disorder/pathology , Brain/pathology , Induced Pluripotent Stem Cells/pathology , Models, Biological , Organoids/pathology , Brain/growth & development , CRISPR-Cas Systems/genetics , Humans
7.
Sci Rep ; 9(1): 2324, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787418

ABSTRACT

Non-alcoholic steatohepatitis (NASH) signified by hepatic steatosis, inflammation, hepatocellular injury, and fibrosis is a growing cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. Hepatic fibrosis resulting from accumulation of extracellular matrix proteins secreted by hepatic myofibroblasts plays an important role in disease progression. Activated hepatic stellate cells (HSCs) have been identified as the primary source of myofibroblasts in animal models of hepatotoxic liver injury; however, so far HSC activation and plasticity have not been thoroughly investigated in the context of NASH-related fibrogenesis. Here we have determined the time-resolved changes in the HSC transcriptome during development of Western diet- and fructose-induced NASH in mice, a NASH model recapitulating human disease. Intriguingly, HSC transcriptional dynamics are highly similar across disease models pointing to HSC activation as a point of convergence in the development of fibrotic liver disease. Bioinformatic interrogation of the promoter sequences of activated genes combined with loss-of-function experiments indicates that the transcriptional regulators ETS1 and RUNX1 act as drivers of NASH-associated HSC plasticity. Taken together, our results implicate HSC activation and transcriptional plasticity as key aspects of NASH pathophysiology.


Subject(s)
Gene Expression Regulation , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Non-alcoholic Fatty Liver Disease/genetics , Transcription, Genetic , Animals , Cell Plasticity , Core Binding Factor Alpha 2 Subunit/metabolism , Diet, Western , Feeding Behavior , Fructose , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology , Proto-Oncogene Protein c-ets-1/metabolism , Time Factors , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...