Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
PLoS One ; 18(9): e0290643, 2023.
Article in English | MEDLINE | ID: mdl-37729181

ABSTRACT

Climate change and climate variability are affecting marine mammal species and these impacts are projected to continue in the coming decades. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species using currently available information. We conducted a trait-based climate vulnerability assessment using expert elicitation for 108 marine mammal stocks and stock groups in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. Our approach combined the exposure (projected change in environmental conditions) and sensitivity (ability to tolerate and adapt to changing conditions) of marine mammal stocks to estimate vulnerability to climate change, and categorize stocks with a vulnerability index. The climate vulnerability score was very high for 44% (n = 47) of these stocks, high for 29% (n = 31), moderate for 20% (n = 22), and low for 7% (n = 8). The majority of stocks (n = 78; 72%) scored very high exposure, whereas 24% (n = 26) scored high, and 4% (n = 4) scored moderate. The sensitivity score was very high for 33% (n = 36) of these stocks, high for 18% (n = 19), moderate for 34% (n = 37), and low for 15% (n = 16). Vulnerability results were summarized for stocks in five taxonomic groups: pinnipeds (n = 4; 25% high, 75% moderate), mysticetes (n = 7; 29% very high, 57% high, 14% moderate), ziphiids (n = 8; 13% very high, 50% high, 38% moderate), delphinids (n = 84; 52% very high, 23% high, 15% moderate, 10% low), and other odontocetes (n = 5; 60% high, 40% moderate). Factors including temperature, ocean pH, and dissolved oxygen were the primary drivers of high climate exposure, with effects mediated through prey and habitat parameters. We quantified sources of uncertainty by bootstrapping vulnerability scores, conducting leave-one-out analyses of individual attributes and individual scorers, and through scoring data quality for each attribute. These results provide information for researchers, managers, and the public on marine mammal responses to climate change to enhance the development of more effective marine mammal management, restoration, and conservation activities that address current and future environmental variation and biological responses due to climate change.


Subject(s)
Caniformia , Climate Change , Animals , Gulf of Mexico , Caribbean Region , Mammals , Cetacea
2.
PLoS One ; 17(8): e0270057, 2022.
Article in English | MEDLINE | ID: mdl-35969521

ABSTRACT

The social structure of estuarine-resident bottlenose dolphins is complex and varied. Residing in habitats often utilized for resource exploitation, dolphins are at risk due to anthropogenic pressures while still federally protected. Effective conservation is predicated upon accurate abundance estimates. In North Carolina, two estuarine-resident stocks (demographically independent groups) of common bottlenose dolphin have been designated using spatiotemporal criteria. Both stocks are subjected to bycatch in fishing gear. The southern North Carolina estuarine stock was estimated at <200 individuals from surveys in 2006, which is outdated per US guidelines. Thus, we conducted a new capture-mark-recapture survey in 2018, identifying 547 distinct individuals, about three times higher than the prior abundance estimate. We compared those individuals to our long-term photo-identification catalog (1995-2018, n = 2,423 individuals), matching 228 individuals. Of those 228, 65 were also included in the 2013 abundance estimate for the northern North Carolina estuarine stock. Using sighting histories for all individuals in the long-term catalog, we conducted a social network analysis, which is independent of a priori stock assignments. The three primary clusters identified were inconsistent with current stock designations and not defined by spatiotemporal distribution. All three clusters had sighting histories in the estuary and on the coast, however, that with the highest within-cluster associations appeared to use estuarine waters more often. The within-cluster association strength was low for one cluster, possibly due to only part of that cluster inhabiting the southern North Carolina estuarine system. Between-cluster differences occurred in infestation rates by the pseudostalked barnacle, Xenobalanus globicipitis, but that did not predict clusters. We suggest the need to re-evaluate the stock structure of estuarine-resident common bottlenose dolphins in North Carolina and currently have insufficient information to assign an abundance estimate to a currently designated stock.


Subject(s)
Bottle-Nosed Dolphin , Animals , Estuaries , North Carolina
3.
Sci Rep ; 11(1): 19611, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608172

ABSTRACT

Mobile, apex predators are commonly assumed to stabilize food webs through trophic coupling across spatially distinct habitats. The assumption that trophic coupling is common remains largely untested, despite evidence that individual behaviors might limit trophic coupling. We used stable isotope data from common bottlenose dolphins across the Gulf of Mexico to determine if these apex predators coupled estuarine and adjacent, nearshore marine habitats. δ13C values differed among the sites, likely driven by environmental factors that varied at each site, such as freshwater input and seagrass cover. Within most sites, δ13C values differed such that dolphins sampled in the upper reaches of embayments had values indicative of estuarine habitats while those sampled outside or in lower reaches of embayments had values indicative of marine habitats. δ15N values were more similar among and within sites than δ13C values. Data from multiple tissues within individuals corroborated that most dolphins consistently used a narrow range of habitats but fed at similar trophic levels in estuarine and marine habitats. Because these dolphins exhibited individual habitat specialization, they likely do not contribute to trophic coupling between estuarine and adjacent marine habitats at a regional scale, suggesting that not all mobile, apex predators trophically couple adjacent habitats.

4.
J Anim Ecol ; 90(5): 1191-1204, 2021 05.
Article in English | MEDLINE | ID: mdl-33608907

ABSTRACT

Dolphin morbillivirus (DMV) is a virulent pathogen that causes high mortality outbreaks in delphinids globally and is spread via contact among individuals. Broadly ranging nearshore and open-ocean delphinids are likely reservoir populations that transmit DMV to estuarine populations. We assessed the seroprevalence of DMV antibodies and determined the habitat use of common bottlenose dolphins, Tursiops truncatus truncatus, from two estuarine sites, Barataria Bay and Mississippi Sound, in the northern Gulf of Mexico. We predicted that risk to DMV exposure in estuarine dolphins is driven by spatial overlap in habitat use with reservoir populations. Serum was collected from live-captured dolphins and tested for DMV antibodies. Habitat use of sampled individuals was determined by analysing satellite-tracked movements and stable isotope values. DMV seroprevalences were high among dolphins at Barataria Bay (37%) and Mississippi Sound (44%), but varied differently within sites. Ranging patterns of Barataria Bay dolphins were categorized into two groups: Interior and Island-associated. DMV seroprevalences were absent in Interior dolphins (0%) but high in Island-associated dolphins (45%). Ranging patterns of Mississippi Sound dolphins were categorized into three groups: Interior, Island-east and Island-west. DMV seroprevalences were detected across Mississippi Sound (Interior: 60%; Island-east: 20%; and Island-west: 43%). At both sites, dolphins in habitats with greater marine influence had enriched δ13 C values, and Barataria Bay dolphins with positive DMV titres had carbon isotope values indicative of marine habitats. Positive titres for DMV antibodies were more common in the lower versus upper parts of Barataria Bay but evenly distributed across Mississippi Sound. A dolphin's risk of exposure to DMV is influenced by how individual ranging patterns interact with environmental geography. Barataria Bay's partially enclosed geography likely limits the nearshore or open-ocean delphinids that carry DMV from interacting with dolphins that use interior, estuarine habitats, decreasing their exposure to DMV. Mississippi Sound's relatively open geography allows for greater spatial overlap and mixing among estuarine, nearshore and/or open-ocean cetaceans. The spread of DMV, and likely other diseases, is affected by the combination of individual movements, habitat use and the environment.


Subject(s)
Bottle-Nosed Dolphin , Common Dolphins , Morbillivirus , Animals , Ecosystem , Gulf of Mexico , Seroepidemiologic Studies
5.
Ecol Evol ; 10(8): 3584-3604, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313620

ABSTRACT

Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species-specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference-collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference-collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.

6.
Ecol Evol ; 6(10): 3208-15, 2016 May.
Article in English | MEDLINE | ID: mdl-27096079

ABSTRACT

Somatic growth rate data for wild sea turtles can provide insight into life-stage durations, time to maturation, and total lifespan. When appropriately validated, the technique of skeletochronology allows prior growth rates of sea turtles to be calculated with considerably less time and labor than required by mark--recapture studies. We applied skeletochronology to 10 dead, stranded green turtles Chelonia mydas that had previously been measured, tagged, and injected with OTC (oxytetracycline) during mark-recapture studies in Hawaii for validating skeletochronological analysis. We tested the validity of back-calculating carapace lengths (CLs) from diameters of LAGs (lines of arrested growth), which mark the outer boundaries of individual skeletal growth increments. This validation was achieved by comparing CLs estimated from measurements of the LAG proposed to have been deposited closest to the time of tagging to actual CLs measured at the time of tagging. Measureable OTC-mark diameters in five turtles also allowed us to investigate the time of year when LAGs are deposited. We found no significant difference between CLs measured at tagging and those estimated through skeletochronology, which supports calculation of somatic growth rates by taking the difference between CLs estimated from successive LAG diameters in humerus bones for this species. Back-calculated CLs associated with the OTC mark and growth mark deposited closest to tagging indicated that annual LAGs are deposited in the spring. The results of this validation study increase confidence in utilization of skeletochronology to rapidly obtain accurate age and growth data for green turtles.

7.
PLoS One ; 10(5): e0127432, 2015.
Article in English | MEDLINE | ID: mdl-25993341

ABSTRACT

Inshore common bottlenose dolphins (Tursiops truncatus) are exposed to a broad spectrum of natural and anthropogenic stressors. In response to these stressors, the mammalian adrenal gland releases hormones such as cortisol and aldosterone to maintain physiological and biochemical homeostasis. Consequently, adrenal gland dysfunction results in disruption of hormone secretion and an inappropriate stress response. Our objective herein was to develop diagnostic reference intervals (RIs) for adrenal hormones commonly associated with the stress response (i.e., cortisol, aldosterone) that account for the influence of intrinsic (e.g., age, sex) and extrinsic (e.g., time) factors. Ultimately, these reference intervals will be used to gauge an individual's response to chase-capture stress and could indicate adrenal abnormalities. Linear mixed models (LMMs) were used to evaluate demographic and sampling factors contributing to differences in serum cortisol and aldosterone concentrations among bottlenose dolphins sampled in Sarasota Bay, Florida, USA (2000-2012). Serum cortisol concentrations were significantly associated with elapsed time from initial stimulation to sample collection (p<0.05), and RIs were constructed using nonparametric methods based on elapsed sampling time for dolphins sampled in less than 30 minutes following net deployment (95% RI: 0.91-4.21 µg/dL) and following biological sampling aboard a research vessel (95% RI: 2.32-6.68 µg/dL). To examine the applicability of the pre-sampling cortisol RI across multiple estuarine stocks, data from three additional southeast U.S. sites were compared, revealing that all of the dolphins sampled from the other sites (N = 34) had cortisol concentrations within the 95th percentile RI. Significant associations between serum concentrations of aldosterone and variables reported in previous studies (i.e., age, elapsed sampling time) were not observed in the current project (p<0.05). Also, approximately 16% of Sarasota Bay bottlenose dolphin aldosterone concentrations were below the assay's detection limit (11 pg/mL), thus hindering the ability to derive 95th percentile RIs. Serum aldosterone concentrations from animals sampled at the three additional sites were compared to the detection limit, and the proportion of animals with low aldosterone concentrations was not significantly different than an expected prevalence of 16%. Although this study relied upon long-term, free-ranging bottlenose dolphin health data from a single site, the objective RIs can be used for future evaluation of adrenal function among individuals sampled during capture-release health assessments.


Subject(s)
Aldosterone/blood , Bottle-Nosed Dolphin/metabolism , Hydrocortisone/blood , Animals , Bottle-Nosed Dolphin/blood , Female , Florida , Linear Models , Male , Stress, Physiological , Time Factors
8.
PLoS One ; 10(3): e0115739, 2015.
Article in English | MEDLINE | ID: mdl-25738772

ABSTRACT

The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.


Subject(s)
Turtles/blood , Animal Shells/anatomy & histology , Animals , Endangered Species , Female , Male , North Carolina , Reference Values , Seasons , Turtles/anatomy & histology
9.
Mar Genomics ; 19: 47-57, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25479946

ABSTRACT

It is increasingly common to monitor the marine environment and establish geographic trends of environmental contamination by measuring contaminant levels in animals from higher trophic levels. The health of an ecosystem is largely reflected in the health of its inhabitants. As an apex predator, the common bottlenose dolphin (Tursiops truncatus) can reflect the health of near shore marine ecosystems, and reflect coastal threats that pose risk to human health, such as legacy contaminants or marine toxins, e.g. polychlorinated biphenyls (PCBs) and brevetoxins. Major advances in the understanding of dolphin biology and the unique adaptations of these animals in response to the marine environment are being made as a result of the development of cell-lines for use in in vitro experiments, the production of monoclonal antibodies to recognize dolphin proteins, the development of dolphin DNA microarrays to measure global gene expression and the sequencing of the dolphin genome. These advances may play a central role in understanding the complex and specialized biology of the dolphin with regard to how this species responds to an array of environmental insults. This work presents the creation, characterization and application of a new molecular tool to better understand the complex and unique biology of the common bottlenose dolphin and its response to environmental stress and infection. A dolphin oligo microarray representing 24,418 unigene sequences was developed and used to analyze blood samples collected from 69 dolphins during capture-release health assessments at five geographic locations (Beaufort, NC, Sarasota Bay, FL, Saint Joseph Bay, FL, Sapelo Island, GA and Brunswick, GA). The microarray was validated and tested for its ability to: 1) distinguish male from female dolphins; 2) differentiate dolphins inhabiting different geographic locations (Atlantic coasts vs the Gulf of Mexico); and 3) study in detail dolphins resident in one site, the Georgia coast, known to be heavily contaminated by Aroclor 1268, an uncommon polychlorinated (PCB) mixture. The microarray was able to distinguish dolphins by sex, geographic location, and corroborate previously published health irregularities for the Georgia dolphins. Genes involved in xenobiotic metabolism, development/differentiation and oncogenic pathways were found to be differentially expressed in GA dolphins. The report bridges the advancements in dolphin genome sequencing to the first step towards providing a cost-effective means to screen for indicators of chemical toxin exposure as well as disease status in top level predators.


Subject(s)
Bottle-Nosed Dolphin/metabolism , Environmental Exposure , Environmental Pollutants/toxicity , Gene Expression Regulation/drug effects , Microarray Analysis/methods , Animals , Aroclors , Atlantic Ocean , Female , Geography , Gulf of Mexico , Male , Polychlorinated Biphenyls , Real-Time Polymerase Chain Reaction , Sex Factors
10.
Mar Environ Res ; 100: 57-67, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24695049

ABSTRACT

As top-level predators, common bottlenose dolphins (Tursiops truncatus) are particularly sensitive to chemical and biological contaminants that accumulate and biomagnify in the marine food chain. This work investigates the potential use of microarray technology and gene expression profile analysis to screen common bottlenose dolphins for exposure to environmental contaminants through the immunological and/or endocrine perturbations associated with these agents. A dolphin microarray representing 24,418 unigene sequences was used to analyze blood samples collected from 47 dolphins during capture-release health assessments from five different US coastal locations (Beaufort, NC, Sarasota Bay, FL, Saint Joseph Bay, FL, Sapelo Island, GA and Brunswick, GA). Organohalogen contaminants including pesticides, polychlorinated biphenyl congeners (PCBs) and polybrominated diphenyl ether congeners were determined in blubber biopsy samples from the same animals. A subset of samples (n = 10, males; n = 8, females) with the highest and the lowest measured values of PCBs in their blubber was used as strata to determine the differential gene expression of the exposure extremes through machine learning classification algorithms. A set of genes associated primarily with nuclear and DNA stability, cell division and apoptosis regulation, intra- and extra-cellular traffic, and immune response activation was selected by the algorithm for identifying the two exposure extremes. In order to test the hypothesis that these gene expression patterns reflect PCB exposure, we next investigated the blood transcriptomes of the remaining dolphin samples using machine-learning approaches, including K-nn and Support Vector Machines classifiers. Using the derived gene sets, the algorithms worked very well (100% success rate) at classifying dolphins according to the contaminant load accumulated in their blubber. These results suggest that gene expression profile analysis may provide a valuable means to screen for indicators of chemical exposure.


Subject(s)
Artificial Intelligence , Bottle-Nosed Dolphin/metabolism , Environmental Exposure , Polychlorinated Biphenyls/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Bottle-Nosed Dolphin/genetics , Environmental Monitoring , Female , Male , Real-Time Polymerase Chain Reaction
11.
Dis Aquat Organ ; 108(2): 91-102, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553415

ABSTRACT

Contamination of coastal waters can carry pathogens and contaminants that cause diseases in humans and wildlife, and these pathogens can be transported by water to areas where they are not indigenous. Marine mammals may be indicators of potential health effects from such pathogens and toxins. Here we isolated bacterial species of relevance to humans from wild bottlenose dolphins Tursiops truncatus and assayed isolated bacteria for antibiotic resistance. Samples were collected during capture-release dolphin health assessments at multiple coastal and estuarine sites along the US mid-Atlantic coast and the Gulf of Mexico. These samples were transported on ice and evaluated using commercial systems and aerobic culture techniques routinely employed in clinical laboratories. The most common bacteria identified were species belonging to the genus Vibrio, although Escherichia coli, Shewanella putrefaciens, and Pseudomonas fluorescens/putida were also common. Some of the bacterial species identified have been associated with human illness, including a strain of methicillin-resistant Staphylococcus aureus (MRSA) identified in 1 sample. Widespread antibiotic resistance was observed among all sites, although the percentage of resistant isolates varied across sites and across time. These data provide a baseline for future comparisons of the bacteria that colonize bottlenose dolphins in the southeastern USA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bottle-Nosed Dolphin/microbiology , Carrier State , Animals , Bacteria/classification , Drug Resistance, Bacterial , Southeastern United States/epidemiology
12.
Proc Biol Sci ; 279(1726): 48-57, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-21613298

ABSTRACT

Polychlorinated biphenyls (PCBs), persistent chemicals widely used for industrial purposes, have been banned in most parts of the world for decades. Owing to their bioaccumulative nature, PCBs are still found in high concentrations in marine mammals, particularly those that occupy upper trophic positions. While PCB-related health effects have been well-documented in some mammals, studies among dolphins and whales are limited. We conducted health evaluations of bottlenose dolphins (Tursiops truncatus) near a site on the Georgia, United States coast heavily contaminated by Aroclor 1268, an uncommon PCB mixture primarily comprised of octa- through deca-chlorobiphenyl congeners. A high proportion (26%) of sampled dolphins suffered anaemia, a finding previously reported from primate laboratory studies using high doses of a more common PCB mixture, Aroclor 1254. In addition, the dolphins showed reduced thyroid hormone levels and total thyroxine, free thyroxine and triiodothyronine negatively correlated with PCB concentration measured in blubber (p = 0.039, < 0.001, 0.009, respectively). Similarly, T-lymphocyte proliferation and indices of innate immunity decreased with blubber PCB concentration, suggesting an increased susceptibility to infectious disease. Other persistent contaminants such as DDT which could potentially confound results were similar in the Georgia dolphins when compared with previously sampled reference sites, and therefore probably did not contribute to the observed correlations. Our results clearly demonstrate that dolphins are vulnerable to PCB-related toxic effects, at least partially mediated through the endocrine system. The severity of the effects suggests that the PCB mixture to which the Georgia dolphins were exposed has substantial toxic potential and further studies are warranted to elucidate mechanisms and potential impacts on other top-level predators, including humans, who regularly consume fish from the same marine waters.


Subject(s)
Anemia/veterinary , Aroclors/toxicity , Bottle-Nosed Dolphin/metabolism , Hypothyroidism/veterinary , Water Pollutants, Chemical/toxicity , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Analysis of Variance , Anemia/blood , Anemia/chemically induced , Anemia/epidemiology , Animals , Aroclors/analysis , Blood Chemical Analysis/veterinary , Bottle-Nosed Dolphin/immunology , Female , Georgia/epidemiology , Hypothyroidism/blood , Hypothyroidism/chemically induced , Hypothyroidism/epidemiology , Immunoassay/veterinary , Immunocompromised Host/drug effects , Linear Models , Male , Pregnancy , Thyroxine/blood , Thyroxine/metabolism , Triiodothyronine/blood , Triiodothyronine/metabolism , Water Pollutants, Chemical/analysis
13.
Environ Sci Technol ; 45(10): 4270-7, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21526819

ABSTRACT

Persistent organic pollutants (POPs) including legacy POPs (PCBs, chlordanes, mirex, DDTs, HCB, and dieldrin) and polybrominated diphenyl ether (PBDE) flame retardants were determined in 300 blubber biopsy samples from coastal and near shore/estuarine male bottlenose dolphins (Tursiops truncatus) sampled along the U.S. East and Gulf of Mexico coasts and Bermuda. Samples were from 14 locations including urban and rural estuaries and near a Superfund site (Brunswick, Georgia) contaminated with the PCB formulation Aroclor 1268. All classes of legacy POPs in estuarine stocks varied significantly (p < 0.05) among sampling locations. POP profiles in blubber varied by location with the most characteristic profile observed in bottlenose dolphins sampled near the Brunswick and Sapelo estuaries along the Georgia coast which differed significantly (p < 0.001) from other sites. Here and in Sapelo, PCB congeners from Aroclor 1268 dominated indicating widespread food web contamination by this PCB mixture. PCB 153, which is associated with non-Aroclor 1268 PCB formulations, correlated significantly to human population indicating contamination from a general urban PCB source. Factors influencing regional differences of other POPs were less clear and warrant further study. This work puts into geographical context POP contamination in dolphins to help prioritize efforts examining health effects from POP exposure in bottlenose dolphins.


Subject(s)
Bottle-Nosed Dolphin/metabolism , Organic Chemicals/metabolism , Water Pollutants, Chemical/metabolism , Adipose Tissue/metabolism , Animals , Atlantic Ocean , Chlordan/metabolism , DDT/metabolism , Dieldrin/metabolism , Environmental Monitoring/methods , Hexachlorobenzene/metabolism , Mirex/metabolism , Polychlorinated Biphenyls/metabolism , Water Pollution, Chemical/statistics & numerical data
14.
Article in English | MEDLINE | ID: mdl-21147244

ABSTRACT

The diving response in marine mammals results in bradycardia and peripheral vasoconstriction, with blood flow redistributing preferentially to nervous and cardiac tissues. Therefore, some tissues are rendered ischemic during a dive; with the first breath after a dive, blood flow to all tissues is reestablished. In terrestrial mammals, reactive oxygen species (ROS) production increases in response to ischemia/reperfusion and oxidative damage can occur. The capacity of marine mammals to tolerate repeated ischemia/reperfusion cycles associated with diving appears to be due to an enhanced antioxidant system. However, it is not known if diving depth and/or duration elicit differences in tissue capacity to produce ROS and antioxidant defenses in marine mammals. The objective of this study was to analyze ROS production, antioxidant defenses and oxidative damage in marine mammal species that perform shallow/short vs. deep/long dives. We measured production of superoxide radical (O(2)(•-)), oxidative damage to lipids and proteins, activity of antioxidant enzymes, and glutathione levels in tissues from shallow/short divers (Tursiops truncatus) and deep/long divers (Kogia spp.). We found that differences between the diving capacity of dolphins and Kogia spp. are reflected in O(2)(•-) production and antioxidant levels. These differences suggest that shallow/short and deep/long divers have distinct mechanisms to successfully maintain redox balance.


Subject(s)
Antioxidants/metabolism , Cetacea/metabolism , Diving/physiology , Animals , Cetacea/physiology , Dolphins/metabolism , Dolphins/physiology , Glutathione/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Tissue Distribution , Whales/metabolism , Whales/physiology
15.
Environ Toxicol Chem ; 29(10): 2143-53, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20872675

ABSTRACT

Cetaceans are federally protected species that are prone to accumulate complex mixtures of persistent organic pollutants (POPs), which individually may exert estrogenic or antiestrogenic effects. In the present study it was assessed whether contaminant mixtures harbored by cetaceans are estrogenic or antiestrogenic using a comparative approach. Interactions of antiestrogenic and estrogenic compounds were first investigated with the E-Screen assay using a mixture of four POPs (dichlorodiphenyldichloroethylene [4,4'-DDE], trans-nonachlor, and polychlorinated biphenyls [PCBs] 138 180) prevalent in cetacean blubber. Estrogenic/antiestrogenic activity was determined for the individual compounds and their binary, tertiary, and quaternary combinations. Significantly different responses were observed for the various POP mixtures, including enhanced estrogenic and antiestrogenic effects and antagonistic interactions. These results were then compared to the concentrations and estrogenic/antiestrogenic activity of contaminant mixtures isolated directly from the blubber of 15 bottlenose dolphins (Tursiops truncatus) collected from five U.S. Atlantic and Gulf of Mexico locations. The lowest observed effect concentrations (LOECs) determined for 4,4'-DDE (20 µmol/L), PCB 138 (20 µmol/L), PCB 180 (21 µmol/L), and trans-nonachlor (3 µmol/L) in the E-Screen were greater than estimated dolphin blood concentrations. Although estimated blood concentrations were below the LOECs, significant estrogenic activity was detected in diluted dolphin blubber from Cape May, NJ and Bermuda. Positive correlations between blubber estrogenicity and select POP concentrations (ΣDDTs, ΣPBDEs, ΣHCB, Σestrogenic PCBs, Σestrogenic POPs) were also observed. Collectively, these results suggest that select bottlenose dolphin populations may be exposed to contaminants that act in concert to exert estrogenic effects at biologically relevant concentrations. These observations do not necessarily provide direct evidence of endocrine disruption; however, they may indicate an environmental source of xenoestrogenic exposure warranting future research.


Subject(s)
Adipose Tissue/metabolism , Water Pollutants, Chemical/toxicity , Animals , Bottle-Nosed Dolphin , Cell Line, Tumor , Humans
16.
Am J Vet Res ; 70(8): 973-85, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19645578

ABSTRACT

OBJECTIVE: To develop robust reference intervals for hematologic and serum biochemical variables by use of data derived from free-ranging bottlenose dolphins (Tursiops truncatus) and examine potential variation in distributions of clinicopathologic values related to sampling sites' geographic locations. ANIMALS: 255 free-ranging bottlenose dolphins. PROCEDURES: Data from samples collected during multiple bottlenose dolphin capture-release projects conducted at 4 southeastern US coastal locations in 2000 through 2006 were combined to determine reference intervals for 52 clinicopathologic variables. A nonparametric bootstrap approach was applied to estimate 95th percentiles and associated 90% confidence intervals; the need for partitioning by length and sex classes was determined by testing for differences in estimated thresholds with a bootstrap method. When appropriate, quantile regression was used to determine continuous functions for 95th percentiles dependent on length. The proportion of out-of-range samples for all clinicopathologic measurements was examined for each geographic site, and multivariate ANOVA was applied to further explore variation in leukocyte subgroups. RESULTS: A need for partitioning by length and sex classes was indicated for many clinicopathologic variables. For each geographic site, few significant deviations from expected number of out-of-range samples were detected. Although mean leukocyte counts did not vary among sites, differences in the mean counts for leukocyte subgroups were identified. CONCLUSIONS AND CLINICAL RELEVANCE: Although differences in the centrality of distributions for some variables were detected, the 95th percentiles estimated from the pooled data were robust and applicable across geographic sites. The derived reference intervals provide critical information for conducting bottlenose dolphin population health studies.


Subject(s)
Bottle-Nosed Dolphin/blood , Analysis of Variance , Animals , Blood Chemical Analysis , Body Weights and Measures , Geography , Hematologic Tests , Reference Values , Regression Analysis , Southeastern United States
17.
Vet Res ; 39(6): 59, 2008.
Article in English | MEDLINE | ID: mdl-18721502

ABSTRACT

We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern.


Subject(s)
Bartonella Infections/microbiology , Bartonella/classification , Bartonella/isolation & purification , Dolphins , Porpoises , Animals , Female , Male
18.
Article in English | MEDLINE | ID: mdl-17524692

ABSTRACT

Hematology and clinical blood chemistry (HCBC) profiles in free-living bottlenose dolphins from Sarasota Bay, Florida have been monitored over a 14-year period. This long-term dataset includes samples from recaptured dolphins, enabling individual variation to be accounted for when investigating seasonal and annual variability. Four different laboratories carried out the assays and inter-laboratory comparisons found significant differences in 31 of 39 parameters measured. However, variability in comparable HCBCs by sex, age, condition, season and year could be investigated. Significant relationships with the independent variables were found for the majority of the HCBCs. Notable consistent seasonal differences included significantly elevated glucose and significantly lower creatinine concentrations in winter compared to summer. These differences may be due to energetic or thermoregulatory fluctuations in the animals by season and do not necessarily have any clinical significance. Erythrocyte counts were significantly lower in the winter, possibly also due to nutritional differences. Albumin and calcium levels in this population have increased significantly over the years of monitoring and consistently across seasons, being higher in the winter than the summer. Again, nutritional and thermal constraints seem to be the most likely environmental factors influencing these patterns.


Subject(s)
Bottle-Nosed Dolphin/blood , Hematology/methods , Seasons , Animal Nutritional Physiological Phenomena , Animals , Blood Chemical Analysis , Blood Glucose/metabolism , Body Temperature Regulation , Bottle-Nosed Dolphin/physiology , Calcium/blood , Creatinine/blood , Erythrocyte Count , Female , Florida , Hematology/standards , Leukocyte Count , Male , Observer Variation , Reference Values , Reproducibility of Results , Serum Albumin/metabolism , Time Factors
19.
Environ Sci Technol ; 40(19): 5860-6, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17051771

ABSTRACT

Polychlorinated biphenyls (PCBs) and hydroxylated metabolic products (OH-PCBs) were measured in plasma collected from live-captured and released bottlenose dolphins (Tursiops truncatus) from five different locations in the Western Atlantic and the Gulf of Mexico in 2003 and 2004. In 2004, the sum (sigma) of concentration of PCBs in plasma of dolphins sampled off Charleston, SC [geometric mean: 223 ng/g of wet weight (w.w.)] was significantly higher (p<0.05) than concentrations detected in animals from the Indian River Lagoon, FL (sigmaPCBs: 122 ng/g w.w.) and the Sarasota Bay, FL (sigmaPCBs: 111 ng/g w.w.). The PCB homolog profiles were similar among locations. Concentrations of OH-PCBs were significantly higher (p<0.05) in plasma of dolphins from Charleston, SC (sigmaOH-PCBs for 2003: 126 ng/g w.w.; 2004: 138 ng/g w.w.) than animals from Florida (sigmaOH-PCBs ranged from 6 to 47 ng/g w.w.) and Bermuda (8.3 ng/g w.w.); however, concentrations in the Charleston samples did not differ from animals captured in Delaware Bay, NJ (57 ng/g w.w.). The sigmaOH-PCBs constituted 2-68% of the total PCB concentrations in plasma. Dichloro- to nonachloro-OH-PCBs were quantified using high-resolution gas chromatography mass spectrometry, but only around 20% of OH-PCBs could be identified by comparison to authentic standards. Results from this study show that OH-PCB are important environmental contaminants in dolphins and suggest that PCBs, decades after their ban, may still constitute a threat to wildlife.


Subject(s)
Bottle-Nosed Dolphin/blood , Polychlorinated Biphenyls/blood , Water Pollutants, Chemical/blood , Animals , Atlantic Ocean , Environmental Monitoring , Female , Hydroxylation , Male
20.
Sci Total Environ ; 349(1-3): 106-19, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16198673

ABSTRACT

Research initiated in 1970 has identified a long-term, year-round resident community of about 140 bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida, providing unparalleled opportunities to investigate relationships between organochlorine contaminant residues and life-history and reproductive parameters. Many individual dolphins are identifiable and of known age, sex, and maternal lineage (< or =4 generations). Observational monitoring provides data on dolphin spatial and temporal occurrence, births and fates of calves, and birth-order. Capture-release operations conducted for veterinary examinations provide biological data and samples for life-history and contaminant residue measurement. Organochlorine concentrations in blubber and blood (plasma) can be examined relative to age, sex, lipid content, and birth-order. Reproductive success is evaluated through tracking of individual female lifetime calving success. For the current study, 47 blubber samples collected during June 2000 and 2001 were analyzed for PCB concentrations of 22 congeners relative to life-history factors and reproductive success. Prior to sexual maturity, males and females exhibited similar concentrations of about 15-50 ppm. Classical patterns of accumulation with age were identified in males, but not in females. Subsequently, males accumulated higher concentrations of PCBs through their lives (>100 ppm), whereas females begin to depurate with their first calf, reaching a balance between contaminant intake and lactational loss (<15 ppm). In primiparous females, PCB concentrations in blubber and plasma and the rates of first-born calf mortality were both high. First-born calves had higher concentrations than subsequent calves of similar age (>25 vs.<25 ppm). Maternal burdens were lower early in lactation and increased as calves approached nutritional independence. Empirical data were generally consistent with a published theoretical risk assessment and supported the need for incorporation of threats from indirect anthropogenic impacts such as environmental pollutants into species management plans. Long-term observational monitoring and periodic biological sampling provide a powerful, non-lethal approach to understanding relationships between organochlorine residue concentrations in tissues and reproductive parameters for coastal dolphins.


Subject(s)
Bottle-Nosed Dolphin/physiology , Polychlorinated Biphenyls/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Animals , Environmental Monitoring , Female , Florida , Lactation , Male , Maternal Exposure , Maternal-Fetal Exchange , Parity , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Pregnancy , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...