Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 12(1): 37, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36740599

ABSTRACT

High-power terahertz radiation was observed to be emitted from a gas jet irradiated by 100-terawatt-class laser pulses in the laser-wakefield acceleration of electrons. The emitted terahertz radiation was characterized in terms of its spectrum, polarization, and energy dependence on the accompanying electron bunch energy and charge under various gas target conditions. With a nitrogen target, more than 4 mJ of energy was produced at <10 THz with a laser-to-terahertz conversion efficiency of ~0.15%. Such strong terahertz radiation is hypothesized to be produced from plasma electrons accelerated by the ponderomotive force of the laser and the plasma wakefields on the time scale of the laser pulse duration and plasma period. This model is examined with analytic calculations and particle-in-cell simulations to better understand the generation mechanism of high-energy terahertz radiation in laser-wakefield acceleration.

2.
Rev Sci Instrum ; 93(11): 113001, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461441

ABSTRACT

In all-optical Compton scattering driven by a multi-petawatt laser, it is critical to have accurate spatiotemporal synchronization between the ultrarelativistic electron bunch and the ultrahigh-intensity laser beam. Such a synchronization was realized by using two complementary optical setups. The first setup, used for the initial synchronization, recorded the spatial interferogram between the two femtosecond lasers used for a GeV electron beam production and an ultrahigh scattering laser beam. The second one, consisting of spatial and spectral interferometers, measured the time delay between the two laser beams in the range of 0-200 fs in real time. These monitoring systems played an essential role in conducting Compton scattering experiments.

4.
Sci Rep ; 9(1): 11249, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375722

ABSTRACT

The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal plasma density profiles we increased the mean electron peak energy more than 50%, from 175 ± 1 MeV to 262 ± 10 MeV and the maximum peak energy from 182 MeV to 363 MeV. The divergence follows closely the change of mean energy and decreases from 58.9 ± 0.45 mrad to 12.6 ± 1.2 mrad along the horizontal axis and from 35 ± 0.3 mrad to 8.3 ± 0.69 mrad along the vertical axis. Particle-in-cell simulations show that a ramp in a plasma density profile can affect the evolution of the wakefield, thus qualitatively confirming the experimental results. The presented method can increase the electron energy for a fixed laser power and at the same time offer an energy tunable source of electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...