Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Reprod ; 37(1): 15-32, 2024 03.
Article in English | MEDLINE | ID: mdl-37566236

ABSTRACT

KEY MESSAGE: Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (PhiST = 0.301 and PhiST = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.


Subject(s)
Paspalum , Paspalum/genetics , Diploidy , Reproduction , Pollen , Plants
2.
Genes (Basel) ; 13(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35205288

ABSTRACT

The cultivation and domestication of plants are human-driven processes that change the biology and attributes of a plant. Ipheion uniflorum is a bulbous geophyte known as Spring Starflower whose cultivation dates back to the first half of the 19th century. At least seven cultivars have been developed from natural stands. However, comparative analyses of wild and cultivated materials are largely missing. In the present study, we provide a morphological evaluation and analyses of the cytological and genetic variability of I. uniflorum that reveal significant levels of differentiation and evidence of artificial selection in the Spring Starflower. Distinctive phenotypic characters in cultivated materials that are rarely found or lacking in wild plants and natural populations, such as pink or violet flowers, together with its reduced heterozygosity and starting genetic differentiation support the view of early mechanisms of domestication acting upon Spring Starflower plants. The probable geographic origin of the cultivated forms is discussed together with perspectives for plant breeding.


Subject(s)
Domestication , Plant Breeding , Flowers/genetics , Humans , Plant Roots , Plants
3.
Mol Ecol ; 30(15): 3716-3729, 2021 08.
Article in English | MEDLINE | ID: mdl-34087027

ABSTRACT

Speciation proceeds through mechanisms that promote reproductive isolation and shape the extent of genetic variation in natural populations, and thus its study is essential to understand the evolutionary processes leading to increased biodiversity. Chromosomal rearrangements are known to facilitate reproductive isolation by hybrid sterility and favour speciation events. The genus Ipheion (Amaryllidaceae, Allioideae) is unique as its species exhibit a remarkable karyological variability but lack population-level genetic data. To unveil the diversification processes acting upon the formation of new lineages within Ipheion in the Pampas of South America, we combined morphology and karyology approaches with genotyping-by-sequencing. Our phylogenomic and population genomics results supported the taxonomic division of Ipheion into three morphological and genetically well-differentiated groups. The origin of Ipheion uniflorum was traced back to its current southern distribution area in the southern Pampean region (in Argentina), from where it had expanded to the north reaching Uruguay. Our results further suggested that chromosome rearrangements and ploidy shifts had triggered speciation events, first during the origin of I. uniflorum and later during its subsequent diversification into I. recurvifolium and I. tweedieanum, in both cases reinforced by extrinsic factors and biogeographical settings. The current study illustrates the analytical power of multidisciplinary approaches integrating phylo- and population genomics with classic analyses to reveal evolutionary processes in plants.


Subject(s)
Garlic , Biological Evolution , Genetic Speciation , Genomics , Phylogeny , Reproductive Isolation
4.
Sci Rep ; 10(1): 8319, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433575

ABSTRACT

In systems alternating between sexual and asexual reproduction, sex increases under unfavorable environmental conditions. In plants producing sexual and asexual (apomictic) seeds, studies on the influence of environmental factors on sex are equivocal. We used Paspalum intermedium to study environmental effects on the expression of sexual and apomictic developments, and on resulting reproductive fitness variables. Flow cytometric and embryological analyses were performed to characterize ploidy and reproductive modes, and effects of local climatic conditions on sexual and apomictic ovule and seed frequencies were determined. Seed set and germination data were collected and used to estimate reproductive fitness. Frequencies of sexual and apomictic ovules and seeds were highly variable within and among populations. Apomictic development exhibited higher competitive ability but lower overall fitness. Frequencies of sexual reproduction in facultative apomictic plants increased at lower temperatures and wider mean diurnal temperature ranges. We identified a two-fold higher fitness advantage of sexuality and a Tug of War between factors intrinsic to apomixis and environmental stressors promoting sexuality which influence the distribution of sex in apomictic populations. This points toward a crucial role of local ecological conditions in promoting a reshuffling of genetic variability that may be shaping the adaptative landscape in apomictic P. intermedium plants.


Subject(s)
Apomixis/genetics , Paspalum/physiology , Biological Evolution , Climate , Gene-Environment Interaction , Genes, Dominant , Genetic Fitness , Genetic Variation , Meiosis/genetics , Models, Biological , Paspalum/genetics , Polyploidy , Reproduction , Seasons
5.
J Plant Res ; 131(2): 211-223, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29075953

ABSTRACT

The tribe Leucocoryneae is taxonomically and cytogenetically complex, mainly due to its extraordinary morphological and karyological variation. Robertsonian translocations had long been recognized as a central factor contributing to karyotype diversity within the Leucocoryneae, but so far no major tendency prevailing on the observed complexity of karyotype formula among species has been identified. The assessment of nuclear DNA contents by flow cytometry using propidium iodide in 23 species, representing all genera within the tribe, showed a monoploid genome size variation of 1Cx = 9.07-30.46 pg denoting a threefolds fluctuation. A highly significant linear association between the average DNA content per chromosome arm (2C/FN) and the monoploid genome size (1Cx) is reported for the first time and identified as a novel indicator of a trend governing karyotype diversity within Leucocoryneae. This trend shows that a reduction in DNA content per chromosome arm is influencing and has shaped karyotype evolution of different monophyletic groups within the tribe despite the complex karyotype diversity and apparently contrasting patterns of genome sizes.


Subject(s)
Amaryllidaceae/genetics , Evolution, Molecular , Genome Size , Genome, Plant , Karyotype , Flow Cytometry , Propidium
6.
Ann Bot ; 112(5): 767-87, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23864004

ABSTRACT

BACKGROUND: Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE: In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.


Subject(s)
Apomixis/physiology , Paspalum/physiology , Poaceae/physiology , Apomixis/genetics , Breeding , Chromosome Mapping , Genes, Plant/genetics , Paspalum/genetics , Poaceae/genetics , Reproduction , Signal Transduction , Transformation, Genetic
7.
New Phytol ; 197(1): 336-347, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23127139

ABSTRACT

Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality.


Subject(s)
Apomixis , Meiosis , Ovule/growth & development , Paspalum/genetics , Seeds/growth & development , Amplified Fragment Length Polymorphism Analysis , DNA, Plant/genetics , Flow Cytometry , Gametogenesis, Plant , Genetic Variation , Genotype , Linear Models , Ovule/cytology , Parthenogenesis , Paspalum/growth & development , Pollination , Reproduction , Seeds/cytology , Self-Fertilization , Species Specificity , Tetraploidy
8.
Ann Bot ; 100(6): 1239-47, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17766843

ABSTRACT

BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.


Subject(s)
Paspalum/genetics , Polyploidy , Chromosomes, Plant/genetics , Crosses, Genetic , Diploidy , Paspalum/growth & development , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...