Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Main subject
Language
Publication year range
1.
Genes (Basel) ; 14(6)2023 05 24.
Article in English | MEDLINE | ID: mdl-37372317

ABSTRACT

The genetic systems of Paspalum species have not been extensively studied. We analyzed the ploidy, reproductive mode, mating system, and fertility of four Paspalum species-Paspalum durifolium, Paspalum ionanthum, Paspalum regnellii, and Paspalum urvillei. An analysis of 378 individuals from 20 populations of northeastern Argentina was conducted. All populations of the four Paspalum species were pure tetraploid and had a sexual and stable reproductive mode. However, some populations of P. durifolium and P. ionanthum showed low levels of apospory. Populations of P. durifolium and P. ionanthum had low seed sets under self-pollination but were fertile under open pollination, showing that self-incompatibility likely caused self-sterility. In contrast, populations of P. regnellii or P. urvillei showed no evidence of apospory, and seed sets in both self- and open pollination conditions were high, suggesting that they are self-compatible due to the absence of pollen-pistil molecular incompatibility mechanisms. The evolutionary origin of the four Paspalum species could explain these differences. This study supplies valuable insights into the genetic systems of Paspalum species, which could have implications for their conservation and management.


Subject(s)
Paspalum , Humans , Paspalum/genetics , Reproduction/genetics , Ploidies , Tetraploidy , Sexuality
2.
Plants (Basel) ; 11(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807591

ABSTRACT

Most apomictic plants are facultative, maintaining the ability to reproduce sexually at different frequencies depending on the taxa, ploidy, and reproductive stage. In this context, Paspalum species are good model systems for studies evaluating the varying levels of apomixis expression. We aimed to identify, in apomictic tetraploid Paspalum species, the degree of apomixis and residual sexuality in three stages of reproductive development, and if their expression varies along them in order to predict their realized impact on the genetic diversity of future generations. Three main stages in the reproductive development (i.e., ovule, seed, and progeny) were studied in tetraploids from populations of P. cromyorhizon and P. maculosum. Mature ovules were studied using cytoembryological analysis, seeds by flow cytometry, and progeny tests with molecular markers. The expression of sexuality and apomixis was compared in each stage. We observed a decline in expression of sexual reproduction through the consecutive stages, jointly with an increase of apomixis expression. Both species showed at least one tetraploid plant capable of producing progeny by sexual means. These small rates of sexually originated progeny prove the ability of apomictic plants to produce low levels of genetic variation through rare events of sexuality. This study also demonstrates the importance of analyzing different reproductive stages in order to get a whole picture of the reproductive outcomes in plant evolution.

3.
Genet Mol Biol ; 32(4): 811-21, 2009 Oct.
Article in English | MEDLINE | ID: mdl-21637459

ABSTRACT

The center of diversity of Argentinean orchids is in the northeast region of the country. Chromosome numbers and karyotype features of 43 species belonging to 28 genera are presented here. Five chromosome records are the first ones at the genus level; these taxa are Aspidogyne kuckzinskii (2n = 42), Eurystyles actinosophila (2n = 56), Skeptrostachys paraguayensis (2n = 46), Stigmatosema polyaden (2n = 40) and Zygostates alleniana (2n = 54). In addition, a chromosome number is presented for the first time for 15 species: Corymborkis flava (2n = 56), Cyclopogon callophyllus (2n = 28), C. oliganthus (2n = 64), Cyrtopodium hatschbachii (2n = 46), C. palmifrons (2n = 46), Galeandra beyrichii (2n = 54), Habenaria bractescens (2n = 44), Oncidium edwallii (2n = 42), O. fimbriatum (2n = 56), O. pubes (2n = 84), O. riograndense (2n = 56), Pelexia ekmanii (2n = 46), P. lindmanii (2n = 46) and Warrea warreana (2n = 48). For Oncidium longicornu (2n = 42), O. divaricatum (2n = 56) and Sarcoglottis fasciculata (2n = 46+1B?, 46+3B?), a new cytotype was found. Chromosome data support phylogenetic relationships proposed by previous cytological, morphologic and molecular analyses, and in all the cases cover some gaps in the South American literature on orchid chromosomes.

4.
Genet. mol. biol ; 32(4): 811-821, 2009. ilus, tab
Article in English | LILACS | ID: lil-531793

ABSTRACT

The center of diversity of Argentinean orchids is in the northeast region of the country. Chromosome numbers and karyotype features of 43 species belonging to 28 genera are presented here. Five chromosome records are the first ones at the genus level; these taxa are Aspidogyne kuckzinskii (2n = 42), Eurystyles actinosophila (2n = 56), Skeptrostachys paraguayensis (2n = 46), Stigmatosema polyaden (2n = 40) and Zygostates alleniana (2n = 54). In addition, a chromosome number is presented for the first time for 15 species: Corymborkis flava (2n = 56), Cyclopogon callophyllus (2n = 28), C. oliganthus (2n = 64), Cyrtopodium hatschbachii (2n = 46), C. palmifrons (2n = 46), Galeandra beyrichii (2n = 54), Habenaria bractescens (2n = 44), Oncidium edwallii (2n = 42), O. fimbriatum (2n = 56), O. pubes (2n = 84), O. riograndense (2n = 56), Pelexia ekmanii (2n = 46), P. lindmanii (2n = 46) and Warrea warreana (2n = 48). For Oncidium longicornu (2n = 42), O. divaricatum (2n = 56) and Sarcoglottis fasciculata (2n = 46+1B?, 46+3B?), a new cytotype was found. Chromosome data support phylogenetic relationships proposed by previous cytological, morphologic and molecular analyses, and in all the cases cover some gaps in the South American literature on orchid chromosomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...