Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Thorac Surg ; 71(4): 1305-11, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11308178

ABSTRACT

BACKGROUND: Ischemia/reperfusion injury can complicate recovery in cardiac operations. Ischemia induces endothelial dysfunction, which may contribute to leukocyte accumulation during reperfusion. Leukocyte-mediated injury may then occur. Using intravital microscopy we previously reported increased leukocyte retention in coronary capillaries and venules during early reperfusion during warm ischemia/reperfusion. In this study we investigated whether cold cardioplegic protection would limit leukocyte sequestration in coronary microvessels early in reperfusion. Pentoxifylline (PTX) has antiinflammatory effects and may limit endothelial dysfunction during ischemia/reperfusion. The effect of cardioplegia modification with PTX was also examined. METHODS: Isolated rat hearts were subjected to 90 minutes of 4 degrees C ischemia after arrest with cardioplegia. Hearts were reperfused with diluted whole blood containing fluorescent-labeled leukocytes. Leukocyte retention in coronary microvessels was observed with intravital microscopy. Three groups were studied, nonischemic control, cold ischemia, and PTX-modified cold ischemia. RESULTS: In coronary capillaries, leukocyte trapping was nearly doubled in unmodified cold ischemia versus control. PTX modification significantly reduced leukocyte accumulation. In coronary venules, greater leukocyte adhesion was observed in unmodified cold ischemia compared to nonischemic controls. PTX modification significantly reduced leukocyte adhesion. CONCLUSIONS: Cold cardioplegia did not prevent leukocyte retention in the coronary microcirculation early in reperfusion. PTX modification of cardioplegia significantly reduced leukocyte sequestration in coronary capillaries and venules. Preserving endothelial function during ischemia may limit leukocyte accumulation and ischemia/reperfusion injury after cardiac operation.


Subject(s)
Heart Arrest, Induced/methods , Leukocytosis/prevention & control , Pentoxifylline/pharmacology , Reperfusion Injury/prevention & control , Animals , Cardioplegic Solutions/pharmacology , Coronary Vessels/cytology , Disease Models, Animal , Male , Myocardial Reperfusion/adverse effects , Rats , Rats, Sprague-Dawley , Reference Values , Sensitivity and Specificity , Time Factors
2.
J Diabetes Complications ; 14(2): 96-107, 2000.
Article in English | MEDLINE | ID: mdl-10959072

ABSTRACT

BACKGROUND: Diabetic hearts are particularly vulnerable to ischemia-reperfusion injury. For leukocytes to participate in ischemia-reperfusion injury, they must first sequester in the microcirculation. The aim of this study was to determine, by direct observation, if early leukocyte deposition was increased in the diabetic coronary microcirculation early in reperfusion following myocardial ischemia. METHODS: Non-diabetic and streptozotocin (STZ)-induced diabetic rat hearts, subjected to 30 min of 37 degrees C, no-flow ischemia, were initially reperfused with blood containing labeled leukocytes. The deposition of fluorescent leukocytes in coronary capillaries and venules was directly visualized and recorded using intravital fluorescence microscopy. In addition, flow cytometry was used to measure CD11b adhesion molecule expression on polymorphonuclear (PMN) leukocytes from non-diabetic and STZ-diabetic rats. RESULTS: In the non-diabetic, control hearts, early in reperfusion, leukocytes trapped in coronary capillaries and adhered to the walls of post-capillary venules. In the diabetic hearts, leukocyte trapping in capillaries and adhesion to venules were both significantly increased (P<0.05). PMN CD11b expression was also significantly increased in the diabetic blood compared to the non-diabetic blood (P<0.05). CONCLUSIONS: Early in reperfusion following myocardial ischemia, leukocytes rapidly accumulate in greater numbers in the coronary microcirculation of the diabetic heart by both trapping in coronary capillaries and by adhering to venules. The enhanced retention of leukocytes in the diabetic coronary microcirculation increases the likelihood of inflammation-mediated reperfusion injury and may explain, in part, the poor recovery of diabetic hearts from an ischemic event.


Subject(s)
Coronary Circulation/physiology , Diabetes Mellitus, Experimental/physiopathology , Leukocytes/physiology , Microcirculation/physiopathology , Myocardial Ischemia/physiopathology , Myocardial Reperfusion , Animals , In Vitro Techniques , Macrophage-1 Antigen/analysis , Male , Microcirculation/physiology , Neutrophils/immunology , Neutrophils/physiology , Rats , Rats, Sprague-Dawley , Reference Values
3.
Microcirculation ; 7(3): 163-81, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10901496

ABSTRACT

Diabetes is a chronic disease of metabolic dysfunction that is increasing world-wide. The hyperglycemia associated with diabetes causes significant protein alterations and an oxidative stress. In the heart, all cell types are affected by diabetes: the myocyte, the vasculature and the blood cells. Four out of five diabetics die from ischemic heart disease and stroke, suggesting that the diabetic is quite vulnerable to ischemic injury. It is important to understand the pathophysiologic challenges that occur in the diabetic heart in order to develop thoughtful treatments to limit this serious complication. This review focuses on the anatomical and functional alterations that occur in the diabetic circulation of the heart, with emphasis on the coronary microcirculation. Coronary microvascular dysfunction combined with blood cellular alterations are presented to explain the amplified oxidative stress that occurs in the diabetic heart under ischemic conditions.


Subject(s)
Coronary Circulation , Diabetes Mellitus/physiopathology , Diabetic Angiopathies/physiopathology , Heart Diseases/etiology , Animals , Blood Cells/pathology , Blood Flow Velocity , Capillary Permeability , Coronary Vessels/physiopathology , Diabetes Complications , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Heart/physiopathology , Microcirculation , Myocardial Ischemia/physiopathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Nitric Oxide/metabolism , Oxidative Stress , Platelet Activation , Rats , Vasodilation
4.
Diabetes ; 46(11): 1859-67, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9356037

ABSTRACT

Cardiovascular disease is excessive in diabetes, and blood cell function is altered. It is not clear, however, if alterations in the blood contribute to the excessive cardiovascular complications of this disease. In this study, we compared the contribution of nondiabetic and diabetic blood to myocardial reperfusion injury. The recovery of cardiac contractile function following no-flow ischemia was studied in isolated diabetic and nondiabetic rat hearts perfused with diabetic or nondiabetic diluted whole blood. Hearts were isolated from 10- to 12-week-old diabetic (streptozotocin, 65 mg/kg, i.v.) and nondiabetic rats and perfused with a Krebs-albumin-red cell solution (K2RBC, Hct 20%). After a 30-min pre-ischemic control period, during which cardiac pump function was evaluated, diabetic and nondiabetic hearts were perfused for 5 min with diluted whole blood (DWB; Hct 20%) collected from either diabetic or nondiabetic donor animals. Coronary flow was then stopped and the hearts subjected to 30 min of no-flow ischemia. Following ischemia, the hearts were reperfused with the K2RBC perfusate. Cardiac contractile function was evaluated throughout the 60-min reperfusion period. Six groups were studied: diabetic and nondiabetic hearts perfused before ischemia with either K2RBC, nondiabetic DWB (NDDWB), or diabetic DWB (DDWB). Perfusion with DWB prior to ischemia impaired the recovery of contractile function in all cases. The impairment to recovery was greater with DDWB than with NDDWB. Although diabetic hearts perfused with K2RBC throughout recovered quite well, the effect of DDWB perfusion in the diabetic hearts was dramatic. In an effort to determine why diabetic blood impaired functional recovery, measures of blood filterability and the generation of reactive oxygen species (ROS) were made. We found that diabetic blood was less filterable than nondiabetic blood; that is, the diabetic blood cells tended to plug the 5-microm filter pores more readily than the nondiabetic blood cells. Also, we found that the diabetic blood was capable of generating significantly greater ROS (oxygen free radicals) than nondiabetic blood (P < 0.05). These findings suggest that the blood contribution to myocardial reperfusion injury is amplified in diabetes. A tendency for diabetic blood cells to plug capillary-sized pores and show enhanced oxygen free radical production may account for the excessive contribution of diabetic blood to reperfusion injury in the heart.


Subject(s)
Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/physiopathology , Heart/physiology , Myocardial Contraction , Myocardial Ischemia/physiopathology , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/physiopathology , Neutrophils/physiology , Animals , Body Weight , Coronary Circulation , Heart/physiopathology , In Vitro Techniques , Myocardial Ischemia/blood , Organ Size , Perfusion/instrumentation , Perfusion/methods , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Ventricular Function, Left
5.
Am J Physiol ; 273(1 Pt 1): E185-91, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9252495

ABSTRACT

The racemic mixture of the antioxidant alpha-lipoic acid (ALA) enhances insulin-stimulated glucose metabolism in insulin-resistant humans and animals. We determined the individual effects of the pure R-(+) and S-(-) enantiomers of ALA on glucose metabolism in skeletal muscle of an animal model of insulin resistance, hyperinsulinemia, and dyslipidemia: the obese Zucker (fa/fa) rat. Obese rats were treated intraperitoneally acutely (100 mg/kg body wt for 1 h) or chronically [10 days with 30 mg/kg of R-(+)-ALA or 50 mg/kg of S-(-)-ALA]. Glucose transport [2-deoxyglucose (2-DG) uptake], glycogen synthesis, and glucose oxidation were determined in the epitrochlearis muscles in the absence or presence of insulin (13.3 nM). Acutely, R-(+)-ALA increased insulin-mediated 2-DG-uptake by 64% (P < 0.05), whereas S-(-)-ALA had no significant effect. Although chronic R-(+)-ALA treatment significantly reduced plasma insulin (17%) and free fatty acids (FFA; 35%) relative to vehicle-treated obese animals, S-(-)-ALA treatment further increased insulin (15%) and had no effect on FFA. Insulin-stimulated 2-DG uptake was increased by 65% by chronic R-(+)-ALA treatment, whereas S-(-)-ALA administration resulted in only a 29% improvement. Chronic R-(+)-ALA treatment elicited a 26% increase in insulin-stimulated glycogen synthesis and a 33% enhancement of insulin-stimulated glucose oxidation. No significant increase in these parameters was observed after S-(-)-ALA treatment. Glucose transporter (GLUT-4) protein was unchanged after chronic R-(+)-ALA treatment but was reduced to 81 +/- 6% of obese control with S-(-)-ALA treatment. Therefore, chronic parenteral treatment with the antioxidant ALA enhances insulin-stimulated glucose transport and non-oxidative and oxidative glucose metabolism in insulin-resistant rat skeletal muscle, with the R-(+) enantiomer being much more effective than the S-(-) enantiomer.


Subject(s)
Antioxidants/pharmacology , Glucose/metabolism , Glycogen/biosynthesis , Insulin Resistance , Insulin/pharmacology , Muscle, Skeletal/metabolism , Obesity/physiopathology , Thioctic Acid/pharmacology , Animals , Biological Transport/drug effects , Blood Glucose/metabolism , Deoxyglucose/metabolism , Fatty Acids, Nonesterified/blood , Female , Humans , Insulin/blood , Muscle, Skeletal/drug effects , Obesity/genetics , Obesity/metabolism , Rats , Rats, Zucker , Reference Values , Stereoisomerism
6.
J Appl Physiol (1985) ; 82(2): 508-12, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9049730

ABSTRACT

Skeletal muscle glucose transport can be regulated by hormonal factors such as insulin and insulin-like growth factor I (IGF-I). Although it is well established that exercise training increases insulin action on muscle glucose transport, it is currently unknown whether exercise training leads to an enhancement of IGF-I-stimulated glucose transport in skeletal muscle. Therefore, we measured glucose transport activity [by using 2-deoxy-D-glucose glucose (2-DG) uptake] in the isolated rat epitrochlearis muscle stimulated by submaximally and maximally effective concentrations of insulin (0.2 and 13.3 nM) or IGF-I (5 and 50 nM) after 1, 2, and 3 wk of voluntary wheel running (WR). After 1 wk of WR, both submaximal and maximal insulin-stimulated 2-DG uptake rates were significantly (P < 0.05) enhanced (43 and 31%) compared with those of sedentary controls, and these variables were further increased after 2 (86 and 57%) and 3 wk (71 and 70%) of WR. Submaximal and maximal IGF-I-stimulated 2-DG uptake rates were significantly enhanced after 1 wk of WR (82 and 61%, and these increases did not expand substantially after 2 (71 and 58%) and 3 wk (96 and 70%) of WR. This enhancement of hormone-stimulated 2-DG uptake in WR muscles preceded any alteration in glucose transporter (GLUT-4) protein level, which increased only after 2 (24%) and 3 wk (54%) of WR. Increases in GLUT-4 protein were significantly correlated (r = 0.844) with increases in citrate synthase. These results indicate that exercise training can enhance both insulin-stimulated and IGF-I-stimulated muscle glucose transport activity and that these improvements can develop without an increase in GLUT-4 protein.


Subject(s)
Glucose/metabolism , Insulin-Like Growth Factor I/pharmacology , Muscles/drug effects , Physical Conditioning, Animal/physiology , Animals , Female , Muscles/metabolism , Rats , Rats, Sprague-Dawley
7.
Life Sci ; 61(8): 805-12, 1997.
Article in English | MEDLINE | ID: mdl-9275010

ABSTRACT

Alpha-lipoic acid (ALA), a potent biological antioxidant, improves insulin action of skeletal muscle glucose transport and metabolism in both human and animal models of insulin resistance. In order to obtain further insight into the potential intracellular mechanisms for the action of ALA on insulin-stimulated glucose transport in skeletal muscle, we investigated the effects of direct incubation with ALA (2 mM) on 2-deoxyglucose (2-DG) uptake by epitrochlearis muscle from either insulin-sensitive lean (Fa/-) or insulin-resistant obese (fa/fa) Zucker rats. ALA stimulated 2-DG uptake in muscle of lean animals by 76%, whereas ALA stimulated 2-DG uptake by only 48% in muscle from obese animals. The stimulation of 2-DG uptake due to ALA was enhanced 30-55% in the presence of insulin. In contrast, ALA action on 2-DG uptake was not additive with the effects of electrically-stimulated muscle contractions in either insulin-sensitive or insulin-resistant muscle. Wortmannin (1 microM), an inhibitor of phosphotidylinositol-3-kinase, completely inhibited insulin action on 2-DG uptake, but inhibited ALA action by only 25%. Collectively, these results indicate that although a portion of ALA action on glucose transport in mammalian skeletal muscle is mediated via the insulin signal transduction pathway, the majority of the direct effect of ALA on skeletal muscle glucose transport is insulin-independent.


Subject(s)
Glucose/metabolism , Muscle, Skeletal/drug effects , Thioctic Acid/pharmacology , Animals , Biological Transport , Dose-Response Relationship, Drug , Female , Muscle Contraction/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Obesity/metabolism , Rats , Rats, Zucker , Species Specificity
8.
Diabetes ; 45(8): 1024-9, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8690147

ABSTRACT

Insulin resistance of muscle glucose metabolism is a hallmark of NIDDM. The obese Zucker (fa/fa) rat--an animal model of muscle insulin resistance--was used to test whether acute (100 mg/kg body wt for 1 h) and chronic (5-100 mg/kg for 10 days) parenteral treatments with a racemic mixture of the antioxidant alpha-lipoic acid (ALA) could improve glucose metabolism in insulin-resistant skeletal muscle. Glucose transport activity (assessed by net 2-deoxyglucose [2-DG] uptake), net glycogen synthesis, and glucose oxidation were determined in the isolated epitrochlearis muscles in the absence or presence of insulin (13.3 nmol/l). Severe insulin resistance of 2-DG uptake, glycogen synthesis, and glucose oxidation was observed in muscle from the vehicle-treated obese rats compared with muscle from vehicle-treated lean (Fa/-) rats. Acute and chronic treatments (30 mg.kg-1.day-1, a maximally effective dose) with ALA significantly (P < 0.05) improved insulin-mediated 2-DG uptake in epitrochlearis muscles from the obese rats by 62 and 64%, respectively. Chronic ALA treatment increased both insulin-stimulated glucose oxidation (33%) and glycogen synthesis (38%) and was associated with a significantly greater (21%) in vivo muscle glycogen concentration. These adaptive responses after chronic ALA administration were also associated with significantly lower (15-17%) plasma levels of insulin and free fatty acids. No significant effects on glucose transporter (GLUT4) protein level or on the activities of hexokinase and citrate synthase were observed. Collectively, these findings indicate that parenteral administration of the antioxidant ALA significantly enhances the capacity of the insulin-stimulatable glucose transport system and of both oxidative and nonoxidative pathways of glucose metabolism in insulin-resistant rat skeletal muscle.


Subject(s)
Antioxidants/pharmacology , Glucose/metabolism , Insulin Resistance , Insulin/pharmacology , Muscles/metabolism , Thioctic Acid/pharmacology , Animals , Biological Transport , Body Weight/drug effects , Female , Glycogen/metabolism , Muscles/anatomy & histology , Organ Size/drug effects , Rats , Rats, Mutant Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...