Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(13): 9051-9061, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38500615

ABSTRACT

A deep understanding of the factors influencing the morphology of thin films based on conjugated polymers is essential to boost their performance in optoelectronic devices. Herein, we investigated the electronic structure and morphology of thin films of the copolymer poly(9,9-dioctyl-fluorenyl-co-bithiophene) (F8T2) in its pristine form as well as samples processed with the solvent additive 1,8-diiodooctane (DIO) or post-processed through thermal annealing treatment. Measurements were carried out using angle-resolved S K-edge NEXAFS (near-edge X-ray absorption fine structure) in total electron yield (TEY) and fluorescence yield (FY) detection modes. Two main transitions were observed at the S 1s NEXAFS spectra: S 1s → π* and S 1s → σ* (S-C). The observed dichroism pointed to a face-on orientation of the conjugated backbone, which was significantly increased for F8T2 films processed with DIO. Resonant Auger decay spectra were obtained and analyzed using the core-hole clock (CHC) method. An enhancement in the charge transfer process was observed for thermally annealed films, especially for samples processed with DIO, corresponding to an increase in film ordering. Furthermore, the investigated films were characterized using X-ray photoelectron spectroscopy, attesting to the presence of the thiophene unit in the samples and demonstrating that some of its sulfur atoms were positively polarized in the F8T2 films. All these experimental findings were compared with molecular dynamics (MD) simulations of film evaporation with and without DIO. The use of MD, together with mathematical modeling, was able to explain the major effects found in the experiments, including the polarization of sulfur atoms. The simultaneous use of powerful spectroscopic techniques and theoretical methods shed light on key aspects linking film morphology with fabrication procedures.

2.
J Phys Condens Matter ; 34(21)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35038696

ABSTRACT

In this paper, the effect of a silafluorene derivative copolymer, the poly[2,7-(9,9-dioctyl-dibenzosilole)-alt-4,7-bis(thiophene-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) sensitized by a simpler homopolymer, the poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) were investigated in a bilayer and ternary blend configuration. The energy transfer between the polymers prior to electron transfer to the acceptors can be an efficient alternative to photocurrent improvement in photovoltaic devices. The interactions between the two donor polymer films were evaluated optically and morphologically with several experimental techniques and correlated to the photovoltaic performance. Improved photon to charge conversion was observed in the blend films at different device geometries-considering bilayer devices with fullerene and inverted flexible devices blade coated in air conditions with a non-fullerene small molecule acceptor. Resonant Auger spectroscopy using the core-hole clock method was employed to evaluate the ultrafast charge delocalization times of conjugated polymers in the low-femtosecond regime. Density functional theory and time-dependent DFT methods were used to help understand some experimental observations. The results show that the homopolymer can improve the absorption spectra and the nonradiative-energy transfer from MDMO-PPV to PSiF-DBT and act as a photosensitizer in the copolymer units. In addition, the PSiF-DBT blended with MDMO-PPV exhibits a more organized structure than the neat material resulting in better absorption stability of films kept under continuous illumination.

3.
Phys Chem Chem Phys ; 22(35): 19923-19931, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32856622

ABSTRACT

In this study, we investigate two copolymers as electron donors in photovoltaic devices, PFO-DBT (poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]) and its analogue with Si, PSiF-DBT (poly[2,7-(9,9-dioctyl-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]). The results discussed here are related to the influence of heavy atoms on the electrical and morphological properties of the devices. Charge transfer dynamics in the polymeric films were evaluated using the core-hole clock method. Besides that, using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, we investigate the electronic structure and charge transfer properties of the two systems. The charge transfer rates were estimated in the framework of the semiclassical Marcus/Hush theory. We found that the better stacking between the polymer chains for PSiF-DBT provides higher solar absorption capacity in regions of higher wavelengths and faster hole transfer rates. We also obtain a faster electron transfer rate at the PSiF-DBT/C60 interface compared to the PFO-DBT/C60 interface that is mainly related to the difference in the driving force between the two systems. These features help to explain why the organic photovoltaic devices using PSiF-DBT as the active layer exhibited a higher performance compared to devices using PFO-DBT. Here, we show that our results are able to provide important insights about the parameters that can influence the photovoltaic performance of the devices.

4.
Phys Chem Chem Phys ; 21(2): 736-743, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30543327

ABSTRACT

The conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), is certainly one of the most important substitute materials for indium tin oxide in organic devices. Its metallic conductivity and transmittance bring favorable perspectives for organic photovoltaic applications. Although graphene oxide (GO) is not a good conductor, it can form high-quality thin films and can be transparent, and additionally, GO is an inexpensive material and can be easily synthesized. This study investigated how the conductivity of a composite film of graphene oxide (GO) and different amounts of PEDOT:PSS can be modified. The effects of GO:PEDOT:PSS composites with several PEDOT:PSS proportions were analyzed in regards to the composite molecular structure and ordering, charge transfer dynamics (in the femtosecond range), electrical properties and morphology. For the best conductivity ratio GO found with 5% PEDOT:PSS, a solvent treatment was also performed, comparing the resistivity of the film when treated with dimethyl sulfoxide (DMSO) and with ethylene glycol.

SELECTION OF CITATIONS
SEARCH DETAIL
...