Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Histochem Cytochem ; 49(2): 259-69, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11156694

ABSTRACT

Na(+)-independent Cl(-)/HCO(3)(-) exchangers (AE1, AE2, AE3) are generally known as ubiquitous, multispanning plasma membrane proteins that regulate intracellular pH and transepithelial acid-base balance in animal tissues. However, previous immunological evidence has suggested that anion exchanger (AE) proteins may also be present in intracellular membranes, including membranes of the Golgi complex and mitochondria. Here we provide several lines of evidence to show that an AE protein is indeed a resident of the Golgi membranes and that this protein corresponds to the full-length AE2a isoform in fibroblasts. First, both the N- and C-terminal antibodies to AE2 (but not to AE1) detected an AE protein in the Golgi membranes. Golgi localization of this AE2 antigen was evident also in cycloheximide-treated cells, indicating that it is a true Golgi-resident protein. Second, our Northern blotting and RT-PCR analyses demonstrated the presence of only the full-length AE2a mRNA in cells that show prominent Golgi staining with antibodies to AE2. Third, antisense oligonucleotides directed against the translational initiation site of the AE2a mRNA markedly inhibited the expression of the endogenous AE2 protein in the Golgi. Finally, transient expression of the GFP-tagged full-length AE2a protein resulted in predominant accumulation of the fusion protein in the Golgi membranes in COS-7 and CHO-K1 cells. Golgi localization of the AE2a probably involves its oligomerization and/or association with the recently identified Golgi membrane skeleton, because a substantial portion of both the endogenous AE2a and the GFP-tagged fusion protein resisted detergent extraction in cold. (J Histochem Cytochem 49:259-269, 2001)


Subject(s)
Anion Transport Proteins , Antiporters , Fibroblasts/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Animals , Blotting, Northern , Cell Line , Cricetinae , Detergents , Fluorescent Antibody Technique, Indirect , Green Fluorescent Proteins , Humans , Immunoblotting , Intracellular Membranes/metabolism , Luminescent Proteins/genetics , Membrane Proteins/genetics , Octoxynol , Oligonucleotides, Antisense/pharmacology , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SLC4A Proteins
2.
Biol Reprod ; 61(4): 981-6, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10491633

ABSTRACT

Chloride/bicarbonate (Cl-/HCO(3)-) exchangers are a family of proteins (anion exchanger [AE] gene family) that regulate many vital cellular processes such as intracellular pH, cell volume, and Cl- concentration. They may also be involved in the regulation of sperm cell motility and acrosome reaction during fertilization, as these two phenomena are bicarbonate dependent, and we have previously shown that a polypeptide immunologically related to erythrocyte band 3 is expressed in mammalian sperm cells. We have now identified this putative sperm cell anion exchanger as the AE2 isoform of this gene family. First, we determined its complete primary structure from the human testis lambda gt 11 cDNA library. The cloned sequence was found to consist of 3896 base pairs (bp) with an open reading frame of 3726 bp, and to be almost identical to the previously published human genomic AE2 sequence. Only four amino acid disparities were found between these two sequences. Second, our in situ hybridization analyses showed that AE2 mRNA is expressed in developing sperm cells, indicating that the cloned sequence corresponds to the sperm cell AE. Our reverse transcription-polymerase chain reaction analyses suggested further that the expression of AE2 mRNA was variable to some extent during the epithelial cell cycle. Strongest expression was observed at stages VII-XIV except for stage X, i.e., when major structural and morphological changes take place. These results suggest that the full-length AE2 isoform regulates HCO(3)- transport in mature sperm cells and thus their motility in vivo.


Subject(s)
Anion Transport Proteins , Antiporters , Spermatogenesis , Animals , DNA, Complementary/chemistry , Gene Library , Humans , In Situ Hybridization , Male , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , RNA, Messenger/biosynthesis , Rats , SLC4A Proteins , Testis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...