Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34438948

ABSTRACT

Antimicrobial peptides play a crucial role in the innate immune system of multicellular organisms. LL-37 is the only known member of the human cathelicidin family. As well as possessing antibacterial properties, it is actively involved in various physiological responses in eukaryotic cells. Accordingly, there is considerable interest in large-scale, low-cost, and microbial endotoxin-free production of LL-37 recombinant peptides for pharmaceutical applications. As a heterologous expression biofactory, we have previously obtained homologous barley (Hordeum vulgare L.) as an attractive vehicle for producing recombinant human LL-37 in the grain storage compartment, endosperm. The long-term stability of expression and inheritance of transgenes is necessary for the successful commercialization of recombinant proteins. Here, we report the stable inheritance and expression of the LL-37 gene in barley after six generations, including two consecutive seasons of experimental field cultivation. The transgenic plants showed normal growth and remained fertile. Based on the bacteria viability test, the produced peptide LL-37 retained high antibacterial activity.

2.
Biotechnol J ; 13(6): e1700628, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29369519

ABSTRACT

The peptide LL-37, a component of the human innate immune system, represents a promising drug candidate. In particular, the development of low-cost production platform technology is a critical bottleneck in its use in medicine. In the present study, a viable approach for the LL-37 production in transgenic barley is developed. First, comparative analyses of the effects of different fused peptide epitope tags applicable for accumulation and purification on LL-37 production yield are performed using transient expression in tobacco leaves. Following the selection of the most yielding fusion peptide strategies, eight different constructs for the expression of codon optimized chimeric LL-37 genes in transgenic barley plants are created. The expression of individual constructs is driven either by an endosperm-specific promoter of the barley B1 hordein gene or by the maize ubiquitin promoter. The transgenes are stably integrated into the barley genome and inherited in the subsequent generation. All transgenic lines show normal phenotypes and are fertile. LL-37 accumulated in the barley seeds up to 0.55 mg per 1 kg of grain. The fused epitope tags are cleaved off by the use of enterokinase. Furthermore, in planta produced LL-37 including the fused versions is biologically active.


Subject(s)
Cathelicidins/metabolism , Hordeum/metabolism , Molecular Farming/methods , Plants, Genetically Modified/metabolism , Recombinant Fusion Proteins/metabolism , Antimicrobial Cationic Peptides , Cathelicidins/chemistry , Cathelicidins/genetics , Cathelicidins/isolation & purification , Hordeum/genetics , Humans , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
3.
Biotechnol Adv ; 33(6 Pt 2): 1005-23, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25784148

ABSTRACT

Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.


Subject(s)
Agriculture/methods , Antimicrobial Cationic Peptides/biosynthesis , Biotechnology/methods , Gene Expression , Plants/metabolism , Antimicrobial Cationic Peptides/pharmacology
4.
Biotechnol Adv ; 32(1): 137-57, 2014.
Article in English | MEDLINE | ID: mdl-24084493

ABSTRACT

Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.


Subject(s)
Biotechnology , Hordeum , Plants, Genetically Modified , Adaptation, Physiological , Disease Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...