Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(4): 6005-6012, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36599089

ABSTRACT

Stretchable electronic devices that maintain electrical function when subjected to stress or strain are useful for enabling new applications for electronics, such as wearable devices, human-machine interfaces, and components for soft robotics. Powering and communicating with these devices is a challenge. NFC (near-field communication) coils solve this challenge but only work efficiently when they are in close proximity to the device. Alternatively, electrical signals and power can arrive via physical connections between the stretchable device and an external source, such as a battery. The ability to create a robust physical and electrical connection between mechanically disparate components may enable new types of hybrid devices in which at least a portion is stretchable or deformable, such as hinges. This paper presents a simple method to make mechanical and electrical connections between elastomeric conductors and flexible (or rigid) conductors. The adhesion at the interface between these disparate materials arises from surface chemistry that forms strong covalent bonds. The utilization of liquid metals as the conductor provides stretchable interconnects between stretchable and non-stretchable electrical traces. The liquid metal can be printed or injected into vias to create interconnects. We characterized the mechanical and electrical properties of these hybrid devices to demonstrate the concept and identify geometric design criteria to maximize mechanical strength. The work here provides a simple and general strategy for creating mechanical and electrical connections that may find use in a variety of stretchable and soft electronic devices.

2.
ACS Appl Mater Interfaces ; 10(13): 11261-11268, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29578686

ABSTRACT

This paper identifies and characterizes silicone elastomers that are well-suited for fabricating highly stretchable and tear-resistant devices that require interfacial bonding by plasma or UV ozone treatment. The ability to bond two or more pieces of molded silicone is important for creating microfluidic channels, chambers for pneumatically driven soft robotics, and other soft and stretchable devices. Sylgard-184 is a popular silicone, particularly for microfluidic applications. However, its low elongation at break (∼100% strain) and moderate tear strength (∼3 N/mm) make it unsuitable for emerging, mechanically demanding applications of silicone. In contrast, commercial silicones, such as Dragon Skin, have excellent mechanical properties yet are difficult to plasma-bond, likely because of the presence of silicone oils that soften the network yet migrate to the surface and interfere with plasma bonding. We found that extracting silicone oligomers from these soft networks allows these materials to bond but only when the Shore hardness exceeds a value of 15 A. It is also possible to mix highly stretchable silicones (Dragon Skin and Ecoflex) with Sylgard-184 to create silicones with intermediate mechanical properties; interestingly, these blends also only bond when the hardness exceeds 15 A. Eight different Pt-cured silicones were also screened; again, only those with Shore hardness above 15 A plasma-bond. The most promising silicones from this study are Sylgard-186 and Elastosil-M4130 and M4630, which exhibit a large deformation (>200% elongation at break), high tear strength (>12 N/mm), and strong plasma bonding. To illustrate the utility of these silicones, we created stretchable electrodes by injecting a liquid metal into microchannels created using such silicones, which may find use in soft robotics, electronic skin, and stretchable energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...