Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Dermatol ; 188(3): 396-406, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36637891

ABSTRACT

BACKGROUND: Acute cutaneous inflammation causes microbiome alterations as well as ultrastructural changes in epidermis stratification. However, the interactions between keratinocyte proliferation and differentiation status and the skin microbiome have not been fully explored. OBJECTIVES: Hypothesizing that the skin microbiome contributes to regulation of keratinocyte differentiation and can modify antimicrobial responses, we examined the effect of exposure to commensal (Staphylococcus epidermidis, SE) or pathogenic (Staphylococcus aureus, SA) challenge on epidermal models. METHODS: Explant biopsies were taken to investigate species-specific antimicrobial effects of host factors. Further investigations were performed in reconstituted epidermal models by bulk transcriptomic analysis alongside secreted protein profiling. Single-cell RNA sequencing analysis was performed to explore the keratinocyte populations responsible for SA inflammation. A dataset of 6391 keratinocytes from control (2044 cells), SE challenge (2028 cells) and SA challenge (2319 cells) was generated from reconstituted epidermal models. RESULTS: Bacterial lawns of SA, not SE, were inhibited by human skin explant samples, and microarray analysis of three-dimensional epidermis models showed that host antimicrobial peptide expression was induced by SE but not SA. Protein analysis of bacterial cocultured models showed that SA exposure induced inflammatory mediator expression, indicating keratinocyte activation of other epidermal immune populations. Single-cell DropSeq analysis of unchallenged naive, SE-challenged and SA-challenged epidermis models was undertaken to distinguish cells from basal, spinous and granular layers, and to interrogate them in relation to model exposure. In contrast to SE, SA specifically induced a subpopulation of spinous cells that highly expressed transcripts related to epidermal inflammation and antimicrobial response. Furthermore, SA, but not SE, specifically induced a basal population that highly expressed interleukin-1 alarmins. CONCLUSIONS: These findings suggest that SA-associated remodelling of the epidermis is compartmentalized to different keratinocyte populations. Elucidating the mechanisms regulating bacterial sensing-triggered inflammatory responses within tissues will enable further understanding of microbiome dysbiosis and inflammatory skin diseases, such as atopic eczema.


Subject(s)
Dermatitis, Atopic , Staphylococcal Infections , Humans , Staphylococcus aureus , Keratinocytes/metabolism , Epidermis/metabolism , Inflammation , Cell Differentiation , Staphylococcal Infections/pathology
2.
Eur J Dermatol ; 27(5): 511-518, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29084638

ABSTRACT

BACKGROUND: Human papilloma virus (HPV) infects keratinocytes of the skin and mucous membranes, and is associated with the induction of cutaneous warts and malignancy. Warts can induce significant morbidity and disability but most therapies, including cryotherapy, laser, and radiofrequency devices show low efficacy and induce discomfort through tissue destruction. Microwaves are readily capable of passing through highly keratinised skin to deliver energy and induce heating of the tissue in a highly controllable, uniform manner. OBJECTIVES: To determine the effects of microwave on cutaneous HPV infection. MATERIALS & METHODS: We undertook a pilot study of microwave therapy to the skin in 32 consecutive individuals with 52 recalcitrant long-lived viral cutaneous warts. Additionally, we undertook a molecular characterisation of the effects of microwaves on the skin. RESULTS: Tissue inflammation was minimal, but 75.9% of lesions cleared which compares favourably with previous studies showing a clearance rate of 23-33% for cryotherapy or salicylic acid. We show that microwaves specifically induce dendritic cell cross-presentation of HPV antigen to CD8+ T cells and suggest that IL-6 may be important for DC IRF1 and IRF4 modulation to enhance this process. CONCLUSION: Keratinocyte-skin dendritic cell cross-talk is integral to host defence against HPV infections, and this pilot study supports the concept of microwave induction of anti-HPV immunity which offers a promising approach for treatment of HPV-induced viral warts and potentially HPV-related cancers.


Subject(s)
Microwaves/therapeutic use , Papillomavirus Infections/radiotherapy , Warts/radiotherapy , Warts/virology , Adult , Aged , Antigens, Viral/immunology , CD8 Antigens/immunology , Dendritic Cells/immunology , Dendritic Cells/radiation effects , Female , Humans , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factors/immunology , Interleukin-6/immunology , Keratinocytes/immunology , Keratinocytes/radiation effects , Male , Middle Aged , Papillomaviridae/immunology , Papillomavirus Infections/immunology , Pilot Projects , Receptor Cross-Talk , T-Lymphocytes/immunology , Warts/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...