Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 11(1): 1402-1414, 2020 12.
Article in English | MEDLINE | ID: mdl-33092477

ABSTRACT

The respiratory tract is a major entry site for microbial pathogens. To combat bacterial infections, the immune system has various defense mechanisms at its disposal, including antimicrobial peptides (AMPs). To search for novel AMPs from the respiratory tract, a peptide library from human broncho-alveolar-lavage (BAL) fluid was screened for antimicrobial activity by radial diffusion assays allowing the efficient detection of antibacterial activity within a small sample size. After repeated testing-cycles and subsequent purification, we identified ß-2-microglobulin (B2M) in antibacterially active fractions. B2M belongs to the MHC-1 receptor complex present at the surface of nucleated cells. It is known to inhibit the growth of Listeria monocytogenes and Escherichia coli and to facilitate phagocytosis of Staphylococcus aureus. Using commercially available B2M we confirmed a dose-dependent inhibition of Pseudomonas aeruginosa and L. monocytogenes. To characterize AMP activity within the B2M sequence, peptide fragments of the molecule were tested for antimicrobial activity. Activity could be localized to the C-terminal part of B2M. Investigating pH dependency of the antimicrobial activity of B2M demonstrated an increased activity at pH values of 5.5 and below, a hallmark of infection and inflammation. Sytox green uptake into bacterial cells following the exposure to B2M was determined and revealed a pH-dependent loss of bacterial membrane integrity. TEM analysis showed areas of disrupted bacterial membranes in L. monocytogenes incubated with B2M and high amounts of lysed bacterial cells. In conclusion, B2M as part of a ubiquitous cell surface complex may represent a potent antimicrobial agent by interfering with bacterial membrane integrity.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Bacteria/growth & development , beta 2-Microglobulin/immunology , Bronchoalveolar Lavage Fluid/chemistry , Cell Membrane , Humans , Hydrogen-Ion Concentration , Immunity, Innate , Listeria monocytogenes , Peptide Library , Pseudomonas aeruginosa
2.
Front Microbiol ; 11: 618278, 2020.
Article in English | MEDLINE | ID: mdl-33537017

ABSTRACT

Tuberculosis is a highly prevalent infectious disease with more than 1.5 million fatalities each year. Antibiotic treatment is available, but intolerable side effects and an increasing rate of drug-resistant strains of Mycobacterium tuberculosis (Mtb) may hamper successful outcomes. Antimicrobial peptides (AMPs) offer an alternative strategy for treatment of infectious diseases in which conventional antibiotic treatment fails. Human serum is a rich resource for endogenous AMPs. Therefore, we screened a library generated from hemofiltrate for activity against Mtb. Taking this unbiased approach, we identified Angiogenin as the single compound in an active fraction. The antimicrobial activity of endogenous Angiogenin against extracellular Mtb could be reproduced by synthetic Angiogenin. Using computational analysis, we identified the hypothetical active site and optimized the lytic activity by amino acid exchanges. The resulting peptide-Angie1-limited the growth of extra- and intracellular Mtb and the fast-growing pathogens Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Toward our long-term goal of evaluating Angie1 for therapeutic efficacy in vivo, we demonstrate that the peptide can be efficiently delivered into human macrophages via liposomes and is not toxic for zebrafish embryos. Taken together, we define Angiogenin as a novel endogenous AMP and derive the small, bioactive fragment Angie1, which is ready to be tested for therapeutic activity in animal models of tuberculosis and infections with fast-growing bacterial pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...