Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Cell Rep ; 43(5): 114158, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722742

ABSTRACT

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.


Subject(s)
Astrocytes , Gap Junctions , Hippocampus , KCNQ Potassium Channels , Potassium , Animals , Mice , Action Potentials/physiology , Astrocytes/metabolism , Connexins/metabolism , Connexins/genetics , Gap Junctions/metabolism , Hippocampus/metabolism , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Neurons/metabolism , Potassium/metabolism , Male , Female
2.
Nat Commun ; 15(1): 2217, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472171

ABSTRACT

Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization has been suggested as a potential clustering mechanism. Here, we used Dual-pulse sub-diffractional Tracking of Internalised Molecules (DsdTIM) to simultaneously track single SVs from the recycling and the reserve pools, in live hippocampal neurons. The reserve pool displays a lower presynaptic mobility compared to the recycling pool and is also present in the axons. Triple knockout of Synapsin 1-3 genes (SynTKO) increased the mobility of reserve pool SVs. Re-expression of wild-type Syn2a (Syn2aWT), but not the tetramerization-deficient mutant K337Q (Syn2aK337Q), fully rescued these effects. Single-particle tracking revealed that Syn2aK337QmEos3.1 exhibited altered activity-dependent presynaptic translocation and nanoclustering. Therefore, Syn2a tetramerization controls its own presynaptic nanoclustering and thereby contributes to the dynamic immobilisation of the SV reserve pool.


Subject(s)
Synapsins , Synaptic Vesicles , Synaptic Vesicles/physiology , Synapsins/genetics , Synapses , Synaptic Transmission/physiology , Neurons/physiology , Presynaptic Terminals
3.
Methods Mol Biol ; 2772: 407-432, 2024.
Article in English | MEDLINE | ID: mdl-38411832

ABSTRACT

Photoactivation is a paradigm consisting in local molecular fluorescent activation by laser illumination in a chosen region (source) while measuring the concentration at a target region. Data-driven modeling is concerned with the following questions: how from the measurement in these two regions is it possible to infer the properties of molecular propagation? How is it possible to use such responses to infer motions occurring in networks such as the endoplasmic reticulum? In this book chapter, we shall review the data-driven analysis based on diffusion-transport models and numerical simulations to interpret the photoactivation dynamics and extract biophysical parameters. We will discuss modeling approaches to reconstruct local network properties from photoactivation transients.


Subject(s)
Coloring Agents , Endoplasmic Reticulum , Biophysics , Diffusion , Light
4.
PLoS Comput Biol ; 20(1): e1011794, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38266036

ABSTRACT

Phase separated domains (PSDs) are ubiquitous in cell biology, representing nanoregions of high molecular concentration. PSDs appear at diverse cellular domains, such as neuronal synapses but also in eukaryotic cell nucleus, limiting the access of transcription factors and thus preventing gene expression. We develop a generalized cross-linker polymer model, to study PSDs: we show that increasing the number of cross-linkers induces a polymer condensation, preventing access of diffusing molecules. To investigate how the PSDs restrict the motion of diffusing molecules, we compute the mean residence and first escaping times. Finally, we develop a method based on mean-square-displacement of single particle trajectories to reconstruct the properties of PSDs from the continuum range of anomalous exponents. We also show here that PSD generated by polymers do not induces a long-range attracting field (potential well), in contrast with nanodomains at neuronal synapses. To conclude, PSDs can result from condensed chromatin organization, where the number of cross-linkers controls molecular access.


Subject(s)
Chromatin , Polymers , Chromatin/metabolism , Polymers/metabolism , Chromosomes , Synapses/physiology , Neurons
5.
Nat Commun ; 14(1): 5615, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699887

ABSTRACT

Topologically Associating Domains (TADs) separate vertebrate genomes into insulated regulatory neighborhoods that focus genome-associated processes. TADs are formed by Cohesin-mediated loop extrusion, with many TAD boundaries consisting of clustered binding sites of the CTCF insulator protein. Here we determine how this clustering of CTCF binding contributes to the blocking of loop extrusion and the insulation between TADs. We identify enrichment of three features of CTCF binding at strong TAD boundaries, consisting of strongly bound and closely spaced CTCF binding peaks, with a further enrichment of DNA-binding motifs within these peaks. Using multi-contact Nano-C analysis in cells with normal and perturbed CTCF binding, we establish that individual CTCF binding sites contribute to the blocking of loop extrusion, but in an incomplete manner. When clustered, individual CTCF binding sites thus create a stepwise insulation between neighboring TADs. Based on these results, we propose a model whereby multiple instances of temporal loop extrusion blocking create strong insulation between TADs.


Subject(s)
Binding Sites , CCCTC-Binding Factor/genetics , Cluster Analysis , Protein Domains
6.
Nanoscale ; 15(29): 12245-12254, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37455621

ABSTRACT

Dendrites and dendritic spines are the essential cellular compartments in neuronal communication, conveying information through transient voltage signals. Our understanding of these compartmentalized voltage dynamics in fine, distal neuronal dendrites remains poor due to the difficulties inherent to accessing and stably recording from such small, nanoscale cellular compartments for a sustained time. To overcome these challenges, we use nanopipettes that permit long and stable recordings directly from fine neuronal dendrites. We reveal a diversity of voltage dynamics present locally in dendrites, such as spontaneous voltage transients, bursting events and oscillating periods of silence and firing activity, all of which we characterized using segmentation analysis. Remarkably, we find that neuronal dendrites can display spontaneous hyperpolarisation events, and sustain transient hyperpolarised states. The voltage patterns were activity-dependent, with a stronger dependency on synaptic activity than on action potentials. Long-time recordings of fine dendritic protrusions show complex voltage dynamics that may represent a previously unexplored contribution to dendritic computations.


Subject(s)
Dendrites , Neurons , Neurons/physiology , Dendrites/physiology , Action Potentials/physiology , Electrophysiology
7.
Front Neurosci ; 17: 988394, 2023.
Article in English | MEDLINE | ID: mdl-36875664

ABSTRACT

Background: Despite multimodal assessment (clinical examination, biology, brain MRI, electroencephalography, somatosensory evoked potentials, mismatch negativity at auditory evoked potentials), coma prognostic evaluation remains challenging. Methods: We present here a method to predict the return to consciousness and good neurological outcome based on classification of auditory evoked potentials obtained during an oddball paradigm. Data from event-related potentials (ERPs) were recorded noninvasively using four surface electroencephalography (EEG) electrodes in a cohort of 29 post-cardiac arrest comatose patients (between day 3 and day 6 following admission). We extracted retrospectively several EEG features (standard deviation and similarity for standard auditory stimulations and number of extrema and oscillations for deviant auditory stimulations) from the time responses in a window of few hundreds of milliseconds. The responses to the standard and the deviant auditory stimulations were thus considered independently. By combining these features, based on machine learning, we built a two-dimensional map to evaluate possible group clustering. Results: Analysis in two-dimensions of the present data revealed two separated clusters of patients with good versus bad neurological outcome. When favoring the highest specificity of our mathematical algorithms (0.91), we found a sensitivity of 0.83 and an accuracy of 0.90, maintained when calculation was performed using data from only one central electrode. Using Gaussian, K-neighborhood and SVM classifiers, we could predict the neurological outcome of post-anoxic comatose patients, the validity of the method being tested by a cross-validation procedure. Moreover, the same results were obtained with one single electrode (Cz). Conclusion: statistics of standard and deviant responses considered separately provide complementary and confirmatory predictions of the outcome of anoxic comatose patients, better assessed when combining these features on a two-dimensional statistical map. The benefit of this method compared to classical EEG and ERP predictors should be tested in a large prospective cohort. If validated, this method could provide an alternative tool to intensivists, to better evaluate neurological outcome and improve patient management, without neurophysiologist assistance.

8.
Front Med (Lausanne) ; 10: 1009434, 2023.
Article in English | MEDLINE | ID: mdl-36950512

ABSTRACT

Introduction: Electroencephalography (EEG) signals contain transient oscillation patterns commonly used to classify brain states in responses to action, sleep, coma or anesthesia. Methods: Using a time-frequency analysis of the EEG, we search for possible causal correlations between the successive phases of general anesthesia. We hypothesize that it could be possible to anticipate recovery patterns from the induction or maintenance phases. For that goal, we track the maximum power of the α-band and follow its time course. Results and discussion: We quantify the frequency shift of the α-band during the recovery phase and the associated duration. Using Pearson coefficient and Bayes factor, we report non-significant linear correlation between the α-band frequency and duration shifts during recovery and the presence of the δ or the α rhythms during the maintenance phase. We also found no correlations between the α-band emergence trajectory and the total duration of the flat EEG epochs (iso-electric suppressions) induced by a propofol bolus injected during induction. Finally, we quantify the instability of the α-band using the mathematical total variation that measures possible deviations from a flat line. To conclude, the present correlative analysis shows that EEG dynamics extracted from the initial and maintenance phases of general anesthesia cannot anticipate both the emergence trajectory and the extubation time.

9.
Sci Adv ; 9(7): eade7804, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800417

ABSTRACT

At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.


Subject(s)
Drosophila Proteins , Synapses , Animals , Synapses/metabolism , Drosophila/metabolism , Synaptic Vesicles/metabolism , Drosophila Proteins/metabolism , Synaptic Transmission
10.
PLoS One ; 18(1): e0278882, 2023.
Article in English | MEDLINE | ID: mdl-36649271

ABSTRACT

Before the availability of vaccines, many countries have resorted multiple times to drastic social restrictions to prevent saturation of their health care system, and to regain control over an otherwise exponentially increasing COVID-19 pandemic. With the advent of data-sharing, computational approaches are key to efficiently control a pandemic with non-pharmaceutical interventions (NPIs). Here we develop a data-driven computational framework based on a time discrete and age-stratified compartmental model to control a pandemic evolution inside and outside hospitals in a constantly changing environment with NPIs. Besides the calendrical time, we introduce a second time-scale for the infection history, which allows for non-exponential transition probabilities. We develop inference methods and feedback procedures to successively recalibrate model parameters as new data becomes available. As a showcase, we calibrate the framework to study the pandemic evolution inside and outside hospitals in France until February 2021. We combine national hospitalization statistics from governmental websites with clinical data from a single hospital to calibrate hospitalization parameters. We infer changes in social contact matrices as a function of NPIs from positive testing and new hospitalization data. We use simulations to infer hidden pandemic properties such as the fraction of infected population, the hospitalisation probability, or the infection fatality ratio. We show how reproduction numbers and herd immunity levels depend on the underlying social dynamics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , France
11.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293178

ABSTRACT

While neuronal mitochondria have been studied extensively in their role in health and disease, the rules that govern calcium regulation in mitochondria remain somewhat vague. In the present study using cultured rat hippocampal neurons transfected with the mtRCaMP mitochondrial calcium sensor, we investigated the effects of cytosolic calcium surges on the dynamics of mitochondrial calcium ([Ca2+]m). Cytosolic calcium ([Ca2+]c) was measured using the high affinity sensor Fluo-2. We recorded two types of calcium events: local and global ones. Local events were limited to a small, 2-5 µm section of the dendrite, presumably caused by local synaptic activity, while global events were associated with network bursts and extended throughout the imaged dendrite. In both cases, cytosolic surges were followed by a delayed rise in [Ca2+]m. In global events, the rise lasted longer and was observed in all mitochondrial clusters. At the end of the descending part of the global event, [Ca2+]m was still high. Global events were accompanied by short and rather high [Ca2+]m surges which we called spikelets, and were present until the complete decay of the cytosolic event. In the case of local events, selective short-term responses were limited to the part of the mitochondrial cluster that was located directly in the center of [Ca2+]c activity, and faded quickly, while responses in the neighboring regions were rarely observed. Caffeine (which recruits ryanodine receptors to supply calcium to the mitochondria), and carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a mitochondrial uncoupler) could affect [Ca2+]m in both global and local events. We constructed a computational model to simulate the fundamental role of mitochondria in restricting calcium signals within a narrow range under synapses, preventing diffusion into adjacent regions of the dendrite. Our results indicate that local cytoplasmic and mitochondrial calcium concentrations are highly correlated. This reflects a key role of signaling pathways that connect the postsynaptic membrane to local mitochondrial clusters.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Rats , Animals , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Caffeine/pharmacology , Mitochondria/metabolism , Calcium Signaling , Hippocampus/metabolism , Neurons/metabolism
12.
Rep Prog Phys ; 85(10)2022 10 05.
Article in English | MEDLINE | ID: mdl-36075196

ABSTRACT

Computational methods are now recognized as powerful and complementary approaches in various applied sciences such as biology. These computing methods are used to explore the gap between scales such as the one between molecular and cellular. Here we present recent progress in the development of computational approaches involving diffusion modeling, asymptotic analysis of the model partial differential equations, hybrid methods and simulations in the generic context of cell sensing and guidance via external gradients. Specifically, we highlight the reconstruction of the location of a point source in two and three dimensions from the steady-state diffusion fluxes arriving to narrow windows located on the cell. We discuss cases in which these windows are located on the boundary of a two-dimensional plane or three-dimensional half-space, on a disk in free space or inside a two-dimensional corridor, or a ball in three dimensions. The basis of this computational approach is explicit solutions of the Neumann-Green's function for the mentioned geometry. This analysis can be used to design hybrid simulations where Brownian paths are generated only in small regions in which the local spatial organization is relevant. Particle trajectories outside of this region are only implicitly treated by generating exit points at the boundary of this domain of interest. This greatly accelerates the simulation time by avoiding the explicit computation of Brownian paths in an infinite domain and serves to generate statistics, without following all trajectories at the same time, a process that can become numerically expensive quickly. Moreover, these computational approaches are used to reconstruct a point source and estimating the uncertainty in the source reconstruction due to an additive noise perturbation present in the fluxes. We also discuss the influence of various window configurations (cluster vs uniform distributions) on recovering the source position. Finally, the applications in developmental biology are formulated into computational principles that could underly neuronal navigation in the brain.


Subject(s)
Neurons , Diffusion , Computer Simulation
13.
Cell Rep Methods ; 2(8): 100277, 2022 08 22.
Article in English | MEDLINE | ID: mdl-36046627

ABSTRACT

Super-resolution imaging can generate thousands of single-particle trajectories. These data can potentially reconstruct subcellular organization and dynamics, as well as measure disease-linked changes. However, computational methods that can derive quantitative information from such massive datasets are currently lacking. We present data analysis and algorithms that are broadly applicable to reveal local binding and trafficking interactions and organization of dynamic subcellular sites. We applied this analysis to the endoplasmic reticulum and neuronal membrane. The method is based on spatiotemporal segmentation that explores data at multiple levels and detects the architecture and boundaries of high-density regions in areas measuring hundreds of nanometers. By connecting dense regions, we reconstructed the network topology of the endoplasmic reticulum (ER), as well as molecular flow redistribution and the local space explored by trajectories. The presented methods are available as an ImageJ plugin that can be applied to large datasets of overlapping trajectories offering a standard of single-particle trajectory (SPT) metrics.


Subject(s)
Algorithms , Single Molecule Imaging , Membranes , Endoplasmic Reticulum/metabolism
14.
Methods Mol Biol ; 2476: 209-247, 2022.
Article in English | MEDLINE | ID: mdl-35635707

ABSTRACT

Single-molecule localization microscopy (SMLM) allows the super-resolved imaging of proteins within mammalian nuclei at spatial resolutions comparable to that of a nucleosome itself (~20 nm). The technique is therefore well suited to the study of chromatin structure. Fixed-cell SMLM has already allowed temporal "snapshots" of how proteins are arranged on chromatin within mammalian nuclei. In this chapter, we focus on how recent developments, for example in selective plane illumination, 3D SMLM, and protein labeling, have led to a range of live-cell SMLM studies. We describe how to carry out single-particle tracking (SPT) of single proteins and, by analyzing their diffusion parameters, how to determine whether proteins interact with chromatin, diffuse freely, or do both. We can study the numbers of proteins that interact with chromatin and also determine their residence time on chromatin. We can determine whether these proteins form functional clusters within the nucleus as well as whether they form specific nuclear structures.


Subject(s)
Carrier Proteins , Chromatin , Animals , Chromosomes , Mammals , Microscopy , Single Molecule Imaging/methods
15.
PLoS Biol ; 20(5): e3001663, 2022 May.
Article in English | MEDLINE | ID: mdl-35623029

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.2006202.].

16.
Article in English | MEDLINE | ID: mdl-35085086

ABSTRACT

Electroencephalography (EEG) has become very common in clinical practice due to its relatively low cost, ease of installation, non-invasiveness, and good temporal resolution. Portable EEG devices are increasingly popular in clinical monitoring applications such as sleep scoring or anesthesia monitoring. In these situations, for reasons of speed and simplicity only few electrodes are used and contamination of the EEG signal by artifacts is inevitable. Visual inspection and manual removal of artifacts is often not possible, especially in real-time applications. Our goal is to develop a flexible technique to remove EEG artifacts in these contexts with minimal supervision. We propose here a new wavelet-based method which allows to remove artifacts from single-channel EEGs. The method is based on a data-driven renormalization of the wavelet components and is capable of adaptively attenuate artifacts of different nature. We benchmark our method against alternative artifact removal techniques. We assessed the performance of the proposed method on publicly available datasets comprising ocular, muscular, and movement artifacts. The proposed method shows superior performances on different kinds of artifacts and signal-to-noise levels. Finally, we present an application of our method to the monitoring of general anesthesia. We show that our method can successfully attenuate various types of artifacts in single-channel EEG. Thanks to its data-driven approach and low computational cost, the proposed method provides a valuable tool to remove artifacts in real-time EEG applications with few electrodes, such as monitoring in special care units.


Subject(s)
Artifacts , Wavelet Analysis , Algorithms , Electroencephalography/methods , Humans , Signal Processing, Computer-Assisted
17.
PLoS Comput Biol ; 17(12): e1009639, 2021 12.
Article in English | MEDLINE | ID: mdl-34871305

ABSTRACT

Rhythmic neuronal network activity underlies brain oscillations. To investigate how connected neuronal networks contribute to the emergence of the α-band and to the regulation of Up and Down states, we study a model based on synaptic short-term depression-facilitation with afterhyperpolarization (AHP). We found that the α-band is generated by the network behavior near the attractor of the Up-state. Coupling inhibitory and excitatory networks by reciprocal connections leads to the emergence of a stable α-band during the Up states, as reflected in the spectrogram. To better characterize the emergence and stability of thalamocortical oscillations containing α and δ rhythms during anesthesia, we model the interaction of two excitatory networks with one inhibitory network, showing that this minimal topology underlies the generation of a persistent α-band in the neuronal voltage characterized by dominant Up over Down states. Finally, we show that the emergence of the α-band appears when external inputs are suppressed, while fragmentation occurs at small synaptic noise or with increasing inhibitory inputs. To conclude, α-oscillations could result from the synaptic dynamics of interacting excitatory neuronal networks with and without AHP, a principle that could apply to other rhythms.


Subject(s)
Alpha Rhythm/physiology , Models, Neurological , Nerve Net/physiology , Brain/physiology , Electroencephalography , Humans , Neuronal Plasticity/physiology
18.
Sci Adv ; 7(38): eabh1376, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34524854

ABSTRACT

Dendritic spines are critical components of neuronal synapses as they receive and transform synaptic inputs into a succession of calcium-regulated biochemical events. The spine apparatus (SA), an extension of smooth endoplasmic reticulum, regulates slow and fast calcium dynamics in spines. Calcium release events deplete SA calcium ion reservoir rapidly, yet the next cycle of signaling requires its replenishment. How spines achieve this replenishment without triggering calcium release remains unclear. Using computational modeling, calcium and STED superresolution imaging, we show that the SA replenishment involves the store-operated calcium entry pathway during spontaneous calcium transients. We identified two main conditions for SA replenishment without depletion: a small amplitude and a slow timescale for calcium influx, and a close proximity between SA and plasma membranes. Thereby, spine's nanoscale organization separates SA replenishment from depletion. We further conclude that spine's receptor organization also determines the calcium dynamics during the induction of long-term synaptic changes.

19.
Mol Cell ; 81(15): 3033-3037, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358454

ABSTRACT

Some biological questions are tough to solve through standard molecular and cell biological methods and naturally lend themselves to investigation by physical approaches. Below, a group of formally trained physicists discuss, among other things, how they apply physics to address biological questions and how physical approaches complement conventional biological approaches.


Subject(s)
Biophysics/methods , Models, Biological , Physics/methods , Single Molecule Imaging , Biology/education , Biophysics/trends , Chromosomes/chemistry , Chromosomes/ultrastructure , Computer Simulation , Humans , Molecular Motor Proteins/chemistry , Origin of Life , Physics/education , Single Molecule Imaging/methods
20.
Phys Biol ; 18(4)2021 06 01.
Article in English | MEDLINE | ID: mdl-33871383

ABSTRACT

Chromatin loops inside the nucleus can be stable for a very long time, which remains poorly understood. Such a time is crucial for chromatin organization maintenance and stability. We explore here several physical scenarios, where loop maintenance is due to diffusing cross-linkers (cohesin stabilized by two CTCF molecules) that can bind and unbind at the base of chromatin loops. Using a Markov chain approach to coarse-grain the binding and unbinding, we consider that a stable loop disappears when the last cross-linker is unbound. We derive expressions for this last passage time that we use to quantify the loop stability for various parameters, such as the chemical rate constant or the number of cross-linkers. The present analysis suggests that the balance between binding and unbinding events regulates the number of cross-linkers in place, based on a positive feed-back mechanism that stabilizes the loop over long-time. To conclude, we found that short- and long-lasting stable loops can vary from minutes to the entire cell cycle lifetime, when the number of cross-linkers increases from 1 to 10. This result suggests that a large spectrum of loop time scales is expected with such a few numbers of cross-linkers per local binding sites.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Markov Chains , Protein Binding , Stochastic Processes , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...