Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Wildl Dis ; 47(4): 984-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22102671

ABSTRACT

The harbor seal population in Glacier Bay National Park, Alaska, has declined by over 70% since 1992. The reasons for this decline are not known. We examined serum antibodies and feces for evidence of exposure to multiple pathogens in this population. We also studied harbor seals from a reference site on Kodiak Island. In 2007, we found antibodies against Leptospira spp. in 31% of specimens from harbor seals in Glacier Bay, but no detectable serum antibodies in samples from Kodiak. In 2008, no samples had detectable antibodies against Leptospira spp. No serum antibodies against Toxoplasma gondii, morbilliviruses, or presence of Cryptosporidium in fecal samples were detected. However, Giardia was found in 6% of the fecal samples from Glacier Bay. Our results indicate that the harbor seal population in Glacier Bay National Park could be immunologically naïve to distemper viruses and therefore vulnerable to these pathogens. Given the relatively low prevalence of antibodies and low titers, pathogens likely are not the reason for the harbor seal decline in Glacier Bay.


Subject(s)
Phoca , Sentinel Surveillance/veterinary , Alaska/epidemiology , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Animals, Wild/virology , Antibodies, Bacterial/blood , Antibodies, Protozoan/blood , Antibodies, Viral/blood , Female , Male , Phoca/microbiology , Phoca/parasitology , Phoca/virology , Population Dynamics , Seroepidemiologic Studies
2.
J Wildl Dis ; 46(3): 687-94, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20688674

ABSTRACT

We report on the presence of specific antibodies to Brucella spp. and Yersinia enterocolitica in polar bears (Ursus maritimus) from northern Alaska (southern Beaufort Sea) during 2003-2006. Based on numerous known stressors (e.g., climate change and loss of sea ice habitat, contaminants), there is increased concern regarding the status of polar bears. Considering these changes, it is important to assess exposure to potentially pathogenic organisms and to improve understanding of transmission pathways. Brucella or specific antibodies to Brucella spp. has been reported in marine mammals. Various assays were used to elucidate the pathway or source of exposure (e.g., "marine" vs. "terrestrial" Brucella spp.) of northern Alaska polar bears to Brucella spp. The standard plate test (SPT) and the buffered Brucella antigen card test (BBA) were used for initial screening for antibodies specific to Brucella. We then evaluated positive reactors (presence of serum antibody specific for Brucella spp.) using immunoblots and competitive enzyme-linked immunosorbent assay (cELISA; based on pinniped-derived Brucella spp. antigen). Annual prevalence of antibody (BBA and SPT) for Brucella spp. ranged from 6.8% to 18.5% over 2003-2006, with an overall prevalence of 10.2%. Prevalence of Brucella spp. antibody did vary by age class. Western blot analyses indicated 17 samples were positive for Brucella spp. antibody; of these, 13 were negative by marine (pinniped) derived Brucella antigen cELISA and four were positive by marine cELISA. Of the four samples positive for Brucella antibody by marine cELISA, three cross-reacted with Y. enterocolitica and Brucella spp. (one sample was Brucella negative and Y. enterocolitica positive). It appears the polar bear antibody does not react with the antigens used on the marine cELISA assay, potentially indicating a terrestrial (nonpinniped) source of Brucella spp.


Subject(s)
Antibodies, Bacterial/blood , Brucella/immunology , Ursidae/microbiology , Yersinia enterocolitica/immunology , Alaska/epidemiology , Animals , Female , Male , Seroepidemiologic Studies , Stress, Psychological
3.
Ecohealth ; 7(3): 307-20, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20617361

ABSTRACT

Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.


Subject(s)
Biomarkers/blood , Ursidae/blood , Animals , Animals, Suckling , Arctic Regions , Ecosystem , Female , Immunoglobulin G/blood , Lactation/blood , Male , Sex Factors
4.
Ecohealth ; 7(3): 321-31, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20607348

ABSTRACT

Arctic temperatures are increasing in response to greenhouse gas forcing and polar bears have already responded to changing conditions. Declines in body stature and vital rates have been linked to warming-induced loss of sea-ice. As food webs change and human activities respond to a milder Arctic, exposure of polar bears and other arctic marine organisms to infectious agents may increase. Because of the polar bear's status as arctic ecosystem sentinel, polar bear health could provide an index of changing pathogen occurrence throughout the Arctic, however, exposure and monitoring protocols have yet to be established. We examine prevalence of antibodies to Toxoplasma gondii, and four morbilliviruses (canine distemper [CDV], phocine distemper [PDV], dolphin morbillivirus [DMV], porpoise morbillivirus [PMV]) including risk factors for exposure. We also examine the relationships between antibody levels and hematologic values established in the previous companion article. Antibodies to Toxoplasma gondii and morbilliviruses were found in both sample years. We found a significant inverse relationship between CDV titer and total leukocytes, neutrophils, monocytes, and eosinophils, and a significant positive relationship between eosinophils and Toxoplasma gondii antibodies. Morbilliviral prevalence varied significantly among age cohorts, with 1-2 year olds least likely to be seropositive and bears aged 5-7 most likely. Data suggest that the presence of CDV and Toxoplasma gondii antibodies is associated with polar bear hematologic values. We conclude that exposure to CDV-like antigen is not randomly distributed among age classes and suggest that differing behaviors among life history stages may drive probability of specific antibody presence.


Subject(s)
Antibodies, Protozoan/blood , Antibodies, Viral/blood , Morbillivirus/immunology , Toxoplasma/immunology , Ursidae/parasitology , Ursidae/virology , Animals , Arctic Regions , Biomarkers/blood , Ecosystem , Female , Logistic Models , Male , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Ursidae/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...