Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimmunol ; 349: 577392, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33007647

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disorder where auto-aggressive T cells target the central nervous system (CNS), causing demyelination. The trans-endothelial migration of leucocytes across the blood-brain barrier (BBB) is one of the earliest CNS events in MS pathogenesis. We examined the effect of the disease state and treatment with fingolimod on the transmigration of peripheral blood mononuclear cells (PBMCs) in an in vitro BBB model. Patients' leucocyte numbers, subsets and phenotypes were assessed by flow cytometry. As expected, fingolimod treatment induced a significant reduction in T cell and B cell numbers compared to untreated MS patients and healthy controls. Interestingly fingolimod led to a marked reduction of CD4+ and a significant increase in CD8+ cell numbers. In migrated cells, only CD3+ cell numbers were reduced in fingolimod-treated, compared to untreated patients; it had no effect on B cell or monocyte transmigration. T cells were then differentiated into naïve, effector and memory subsets based on their expression of CCR7. This showed that MS patients had increased numbers of effector memory CD4+ cells re-expressing CD45RA (TEMRA) and a decrease in central memory (CM) CD8+ cells. The former was corrected by fingolimod, while the latter was not. CM CD4+ and CD8+ cells migrated across BBB more efficiently in fingolimod-treated patients. We found that while fingolimod reduced the proportions of naïve CD19+ B cells, it significantly increased the proportions of these cells which migrated. When B cells were further stratified based on CD24, CD27 and CD38 expression, the only effect of fingolimod was an enhancement of CD24hiCD27+ B cell migration, compared to untreated MS patients. The migratory capacities of CD8hi Natural Killer (NK), CD8dim NK and NK-T cells were also reduced by fingolimod. While the disease-modifying effects of fingolimod are currently explained by its effect on reducing circulating auto-aggressive lymphocytes, our data suggests that fingolimod may also have a direct though differential effect on the trans-endothelial migration of circulating lymphocyte populations.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Lymphocyte Subsets/drug effects , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Transendothelial and Transepithelial Migration/drug effects , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Female , Fingolimod Hydrochloride/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lymphocyte Subsets/metabolism , Male , Transendothelial and Transepithelial Migration/physiology , Treatment Outcome
2.
Sci Rep ; 5: 16314, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26553743

ABSTRACT

Microparticle (MP) research is clouded by debate regarding the accuracy and validity of flow cytometry (FCM) as an analytical methodology, as it is influenced by many variables including the pre-analytical conditions, instruments physical capabilities and detection parameters. This study utilises a simplistic in vitro system for generating MP, and through comparative analysis with immuno-electron microscopy (Immuno-EM) assesses the strengths and limitations of probe selection and high-sensitivity FCM. Of the markers examined, MP were most specifically labelled with phosphatidylserine ligands, annexin V and lactadherin, although only ~60% MP are PS positive. Whilst these two ligands detect comparable absolute MP numbers, they interact with the same population in distinct manners; annexin V binding is enhanced on TNF induced MP. CD105 and CD54 expression were, as expected, consistent and enhanced following TNF activation respectively. Their labelling however accounted for as few as 30-40% of MP. The greatest discrepancies between FCM and I-EM were observed in the population solely labelled for the surface antigen. These findings demonstrate that despite significant improvements in resolution, high-sensitivity FCM remains limited in detecting small-size MP expressing low antigen levels. This study highlights factors to consider when selecting endothelial MP probes, as well as interpreting and representing data.


Subject(s)
Cell-Derived Microparticles/chemistry , Flow Cytometry , Annexin A5/immunology , Annexin A5/metabolism , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Surface/immunology , Antigens, Surface/metabolism , Cell Line , Cell-Derived Microparticles/immunology , Cell-Derived Microparticles/metabolism , Endoglin , Gold/chemistry , Humans , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Limit of Detection , Microscopy, Immunoelectron , Milk Proteins/immunology , Milk Proteins/metabolism , Phosphatidylserines/immunology , Phosphatidylserines/metabolism , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism
3.
Cytometry B Clin Cytom ; 70(4): 259-69, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16906581

ABSTRACT

BACKGROUND: ZAP-70 protein expression has been proposed as a marker for immunoglobulin heavy chain mutational status, which some studies have correlated with disease course in B-cell chronic lymphocytic leukemia (CLL). Studies published to date measuring levels of expression of ZAP-70 intracellular protein using flow cytometry have demonstrated poor performance, as defined by the difference in signal in known positive and negative lymphocyte populations. METHODS: A recently published method (Chow S, Hedley DW, Grom P, Magari R, Jacobberger JW, Shankey TV, Cytometry A 2005;67:4-17) to measure intracellular phospho-epitopes was optimized using a design of experiments (DOE) approach to provide the best separation of ZAP-70 expression in positive T- or NK-cells as compared to negative B-cells in peripheral blood samples. A number of commercially available anti-ZAP-70 antibody-conjugates were screened using this methodology, and the antibody-conjugate showing the best performance was chosen to develop a four-color, five antibody assays to measure ZAP-70 levels in whole blood specimens. RESULTS: Using the optimized fixation and permeabilization method, improvement in assay performance (signal-to-noise, S/N) was seen in most of the antibodies tested. The custom SBZAP conjugate gave the best S/N when used in conjunction with this optimized fixation /permeabilization method. In conjunction with carefully standardized instrument set-up protocols, we obtained both intra- and interlaboratory reproducibility in the analysis of ZAP-70 expression in whole blood samples from normal and CLL patients. CONCLUSIONS: The development of a sensitive, specific and highly reproducible ZAP-70 assay represents only the first essential step for any clinical assay. The universal implementation of a validated data analysis method and the establishment of methodology-based cutoff points for clinical outcomes must next be established before ZAP-70 protein analysis can be routinely implemented in the clinical laboratory.


Subject(s)
B-Lymphocytes/chemistry , Flow Cytometry/methods , Killer Cells, Natural/chemistry , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , T-Lymphocytes/chemistry , Tissue Fixation/methods , ZAP-70 Protein-Tyrosine Kinase/analysis , Antibodies, Monoclonal/immunology , Antigen-Antibody Reactions , B-Lymphocytes/immunology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/immunology , Cell Membrane Permeability , Humans , Killer Cells, Natural/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Reproducibility of Results , Staining and Labeling , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/biosynthesis , ZAP-70 Protein-Tyrosine Kinase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...