Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Behav ; 281: 114563, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723388

ABSTRACT

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague-Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.


Subject(s)
Gait Disorders, Neurologic , Levodopa , Oxidopamine , Rats, Sprague-Dawley , Animals , Levodopa/pharmacology , Levodopa/adverse effects , Male , Female , Rats , Gait Disorders, Neurologic/chemically induced , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Antiparkinson Agents/pharmacology , Disease Models, Animal , Medial Forebrain Bundle/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Dopamine/metabolism , Dose-Response Relationship, Drug , Functional Laterality/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Gait/drug effects , Dyskinesia, Drug-Induced
SELECTION OF CITATIONS
SEARCH DETAIL
...