Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 68(3): e0112023, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38289044

ABSTRACT

ANT3310 is a novel broad-spectrum diazabicyclooctane serine ß-lactamase inhibitor being developed in combination with meropenem (MEM) for the treatment of serious infections in hospitalized patients where carbapenem-resistant Gram-negative pathogens are expected. In this study, we evaluated the in vitro antibacterial activity of MEM in the presence of ANT3310 at 8 µg/mL against global clinical isolates that included Acinetobacter baumannii (n = 905), carbapenem-resistant Enterobacterales (CRE), carrying either oxacillinase (OXA) (n = 252) or Klebsiella pneumoniae carbapenemase (KPC) (n = 180) carbapenemases, and Pseudomonas aeruginosa (n = 502). MEM was poorly active against A. baumannii, as were MEM-vaborbactam, ceftazidime-avibactam, aztreonam-avibactam, cefepime-taniborbactam, cefepime-zidebactam, and imipenem-relebactam (MIC90 values of ≥32 µg/mL). On the other hand, MEM-ANT3310 displayed an MIC90 value of 4 µg/mL, similar to that observed with sulbactam-durlobactam, a drug developed to specifically treat A. baumannii infections. ANT3310 (8 µg/mL) additionally restored the activity of MEM against OXA- and KPC-producing CREs decreasing MEM MIC90 values from >32 µg/mL to 0.25 and 0.5 µg/mL, respectively. The combination of 8 µg/mL of both MEM and ANT3310 prevented growth of 97.5% of A. baumannii and 100% of OXA- and KPC-positive CREs, with ~90% of P. aeruginosa isolates also displaying MEM MICs ≤8 µg/mL. Furthermore, MEM-ANT3310 was efficacious in both thigh and lung murine infection models with OXA-23 A. baumannii. This study demonstrates the potent in vitro activity of the MEM-ANT3310 combination against both carbapenem-resistant A. baumannii and Enterobacterales clinical isolates, a key differentiator to other ß-lactam/ß-lactamase combinations.


Subject(s)
Acinetobacter baumannii , beta-Lactamase Inhibitors , Humans , Animals , Mice , Meropenem/pharmacology , beta-Lactamase Inhibitors/pharmacology , Lactams , Anti-Bacterial Agents/pharmacology , beta-Lactamases , Carbapenems/pharmacology , Azabicyclo Compounds/pharmacology , Drug Combinations , Microbial Sensitivity Tests
2.
J Med Chem ; 63(24): 15802-15820, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33306385

ABSTRACT

The diazabicyclooctanes (DBOs) are a class of serine ß-lactamase (SBL) inhibitors that use a strained urea moiety as the warhead to react with the active serine residue in the active site of SBLs. The first in-class drug, avibactam, as well as several other recently approved DBOs (e.g., relebactam) or those in clinical development (e.g., nacubactam and zidebactam) potentiate activity of ß-lactam antibiotics, to various extents, against carbapenem-resistant Enterobacterales (CRE) carrying class A, C, and D SBLs; however, none of these are able to rescue the activity of ß-lactam antibiotics against carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO "critical priority pathogen" producing class D OXA-type SBLs. Herein, we describe the chemical optimization and resulting structure-activity relationship, leading to the discovery of a novel DBO, ANT3310, which uniquely has a fluorine atom replacing the carboxamide and stands apart from the current DBOs in restoring carbapenem activity against OXA-CRAB as well as SBL-carrying CRE pathogens.


Subject(s)
Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Octanes/chemistry , beta-Lactamases/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Binding Sites , Carbapenems/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/drug effects , Half-Life , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Octanes/metabolism , Octanes/pharmacology , Stereoisomerism , Structure-Activity Relationship , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
3.
ACS Infect Dis ; 6(9): 2419-2430, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32786279

ABSTRACT

The clinical effectiveness of the important ß-lactam class of antibiotics is under threat by the emergence of resistance, mostly due to the production of acquired serine- (SBL) and metallo-ß-lactamase (MBL) enzymes. To address this resistance issue, multiple ß-lactam/ß-lactamase inhibitor combinations have been successfully introduced into the clinic over the past several decades. However, all of those combinations contain SBL inhibitors and, as yet, there are no MBL inhibitors in clinical use. Consequently, there exists an unaddressed yet growing healthcare problem due to the rise in recent years of highly resistant strains which produce New Delhi metallo (NDM)-type metallo-carbapenemases. Previously, we reported the characterization of an advanced MBL inhibitor lead compound, ANT431. Herein, we discuss the completion of a lead optimization campaign culminating in the discovery of the preclinical candidate ANT2681, a potent NDM inhibitor with strong potential for clinical development.


Subject(s)
Enterobacteriaceae , beta-Lactamase Inhibitors , Anti-Bacterial Agents/pharmacology , Meropenem/pharmacology , Monobactams , beta-Lactamase Inhibitors/pharmacology
4.
Article in English | MEDLINE | ID: mdl-29530861

ABSTRACT

Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent and have become a major worldwide threat to human health. Carbapenem resistance is driven primarily by the acquisition of ß-lactamase enzymes, which are able to degrade carbapenem antibiotics (hence termed carbapenemases) and result in high levels of resistance and treatment failure. Clinically relevant carbapenemases include both serine ß-lactamases (SBLs; e.g., KPC-2 and OXA-48) and metallo-ß-lactamases (MBLs), such as NDM-1. MBL-producing strains are endemic within the community in many Asian countries, have successfully spread worldwide, and account for many significant CRE outbreaks. Recently approved combinations of ß-lactam antibiotics with ß-lactamase inhibitors are active only against SBL-producing pathogens. Therefore, new drugs that specifically target MBLs and which restore carbapenem efficacy against MBL-producing CRE pathogens are urgently needed. Here we report the discovery of a novel MBL inhibitor, ANT431, that can potentiate the activity of meropenem (MEM) against a broad range of MBL-producing CRE and restore its efficacy against an Escherichia coli NDM-1-producing strain in a murine thigh infection model. This is a strong starting point for a chemistry lead optimization program that could deliver a first-in-class MBL inhibitor-carbapenem combination. This would complement the existing weaponry against CRE and address an important and growing unmet medical need.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Meropenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics
6.
Lab Invest ; 96(4): 439-49, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26855364

ABSTRACT

Wound infection is a major clinical problem, yet understanding of bacterial host interactions in the skin remains limited. Microbe-derived molecules, known as pathogen-associated molecular patterns, are recognised in barrier tissues by pattern-recognition receptors. In particular, the pathogen-associated molecular pattern, lipopolysaccharide (LPS), a component of microbial cell walls and a specific ligand for Toll-like receptor 4, has been widely used to mimic systemic and local infection across a range of tissues. Here we administered LPS derived from Klebsiella pneumoniae, a species of bacteria that is emerging as a wound-associated pathogen, to full-thickness cutaneous wounds in C57/BL6 mice. Early in healing, LPS-treated wounds displayed increased local apoptosis and reduced proliferation. Subsequent healing progression was delayed with reduced re-epithelialisation, increased proliferation, a heightened inflammatory response and perturbed wound matrix deposition. Our group and others have previously demonstrated the beneficial effects of 17ß-estradiol treatment across a range of preclinical wound models. Here we asked whether oestrogen would effectively promote healing in our LPS bacterial infection model. Intriguingly, co-treatment with 17ß-estradiol was able to promote re-epithelialisation, dampen inflammation and induce collagen deposition in our LPS-delayed healing model. Collectively, these studies validate K. pneumoniae-derived LPS treatment as a simple yet effective model of bacterial wound infection, while providing the first indication that oestrogen could promote cutaneous healing in the presence of infection, further strengthening the case for its therapeutic use.


Subject(s)
Estrogens/pharmacology , Klebsiella Infections/prevention & control , Klebsiella pneumoniae/drug effects , Skin/drug effects , Wound Healing/drug effects , Wound Infection/prevention & control , Animals , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Estradiol/pharmacology , Female , Host-Pathogen Interactions/drug effects , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Klebsiella Infections/chemically induced , Klebsiella Infections/microbiology , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/physiology , Lipopolysaccharides , Mice, Inbred C57BL , Microscopy, Fluorescence , Skin/microbiology , Skin/physiopathology , Time Factors , Toll-Like Receptor 4/metabolism , Wound Infection/chemically induced , Wound Infection/microbiology
7.
Exp Dermatol ; 21(8): 581-5, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22775993

ABSTRACT

Current understanding of the complex process of wound repair is based on decades of study. Integral to this understanding has been the use of in vitro and in vivo models to uncover the key molecular players. Now that major wound processes are more fully understood, therapeutic strategies can be developed to manipulate wound repair. Particularly important areas for future research include developing therapies to aid treatment of healing pathologies such as chronic wounds, and manipulating the normal healing processes to drive a more regenerative phenotype in adults. Here, we discuss the benefits and limitations of current animal-based models and highlight the urgent need for improved predictive preclinical models for wound healing research. We conclude by suggesting directions where more robust models of chronic wound pathologies may arise, expediting the development of novel therapies.


Subject(s)
Models, Animal , Models, Biological , Wound Healing/physiology , Ambystoma mexicanum , Animals , Mice , Regeneration/physiology , Skin/injuries , Skin Physiological Phenomena , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...