Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 373(6560): eabj2685, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516796

ABSTRACT

Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.


Subject(s)
Brain Injuries/complications , Complement C1q/physiology , Sleep Stages , Sleep Wake Disorders/etiology , Sleep Wake Disorders/physiopathology , Thalamus/physiopathology , Animals , Brain Injuries/physiopathology , Complement C1q/genetics , Disease Models, Animal , Epilepsy/physiopathology , Mice , Microglia/metabolism , Thalamus/metabolism
3.
Cell Rep ; 26(1): 54-64.e6, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605686

ABSTRACT

Loss of function in the Scn1a gene leads to a severe epileptic encephalopathy called Dravet syndrome (DS). Reduced excitability in cortical inhibitory neurons is thought to be the major cause of DS seizures. Here, in contrast, we show enhanced excitability in thalamic inhibitory neurons that promotes the non-convulsive seizures that are a prominent yet poorly understood feature of DS. In a mouse model of DS with a loss of function in Scn1a, reticular thalamic cells exhibited abnormally long bursts of firing caused by the downregulation of calcium-activated potassium SK channels. Our study supports a mechanism in which loss of SK activity causes the reticular thalamic neurons to become hyperexcitable and promote non-convulsive seizures in DS. We propose that reduced excitability of inhibitory neurons is not global in DS and that non-GABAergic mechanisms such as SK channels may be important targets for treatment.


Subject(s)
Epilepsies, Myoclonic/physiopathology , Seizures/physiopathology , Thalamus/physiopathology , Animals , Disease Models, Animal , Humans , Mice
4.
Cell Rep ; 19(10): 2130-2142, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28591583

ABSTRACT

Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT) gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV) and somatostatin (SOM) expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.


Subject(s)
Brain Waves , Cerebral Cortex/metabolism , Neurons/metabolism , Thalamic Nuclei/metabolism , Animals , Cerebral Cortex/cytology , Female , Humans , Male , Mice , Neurons/cytology , Parvalbumins/biosynthesis , Somatostatin/biosynthesis , Thalamic Nuclei/cytology
5.
Nature ; 520(7549): 675-8, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25925480

ABSTRACT

The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive and negative. Different populations of BLA neurons may encode fearful or rewarding associations, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained unknown. Here we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) undergo opposing synaptic changes following fear or reward conditioning. We find that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impairs fear conditioning and enhances reward conditioning. We characterize these functionally distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. Overall, we provide a mechanistic explanation for the representation of positive and negative associations within the amygdala.


Subject(s)
Amygdala/cytology , Amygdala/physiology , Fear/physiology , Neural Pathways , Neurons/physiology , Reward , Animals , Conditioning, Classical , Fear/psychology , Gene Expression Profiling , Long-Term Potentiation , Male , Mice , Mice, Inbred C57BL , Motivation , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Nucleus Accumbens/radiation effects , Reinforcement, Psychology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...