Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 2(4): L23-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16317225

ABSTRACT

Methods are presented to incorporate polymer-based bioactive matrices into micro-fabricated implantable microelectrode arrays. Using simple techniques, hydrogels infused with bioactive molecules are deposited within wells in the substrate of the device. This method allows local drug delivery without increasing the footprint of the device. In addition, each well can be loaded individually, allowing spatial and temporal control over diffusion gradients in the microenvironment of the implanted neural interface probe. In vivo testing verified the following: diffusion of the bioactive molecules, integration of the bioactive molecules with the intended neural target and concurrent extracellular recording using nearby electrodes. These results support the feasibility of using polymer gels to deliver bioactive molecules to the region close to microelectrode shanks. This technique for microdrug delivery may serve as a means to intervene with the initial phases of the neuroinflammatory tissue response to permanently implanted microelectrode arrays.


Subject(s)
Brain/drug effects , Drug Delivery Systems/instrumentation , Electrodes, Implanted , Injections/instrumentation , Microelectrodes , Microfluidics/instrumentation , Animals , Brain/physiology , Drug Delivery Systems/methods , Equipment Design , Equipment Failure Analysis , Microfluidics/methods , Rats
2.
J Neural Eng ; 2(4): 97-102, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16317233

ABSTRACT

This research presents immunohistochemical strategies for assessing the interactions at the immediate interface between micro-scale implanted devices and the surrounding brain tissue during inflammatory astrogliotic reactions. This includes preparation, microscopy and analysis techniques for obtaining images of the intimate contact between neural cells and the surface of implantable micro-electromechanical systems (MEMS) devices. The ability to visualize the intact interface between an implant and the surrounding tissue allows researchers to examine tissue that is unchanged from its native implanted state. Conversely, current popular techniques involve removing the implant. This tends to cause damage to the tissue immediately surrounding the implant and can hinder one's ability to differentiate inflammatory responses to the implant versus physical damage occurring from removal of the implant from the tissue. Due to advances in microscopy and staining techniques, it is now possible to visualize the intact tissue-implant interface. This paper presents the development of imaging techniques for visualizing the intact interface between neural tissue and implanted devices. This is particularly important for understanding both the acute and chronic neuroinflammatory responses to devices intended for long-term use in a prosthetic system. Non-functional, unbonded devices were imaged in vitro and in vivo at different times post-implantation via a range of techniques. Using these techniques, detailed interactions could be seen between delicate cellular processes and the electrode surface, which would have been destroyed using conventional histology processes.


Subject(s)
Astrocytes/pathology , Brain/pathology , Foreign-Body Reaction/pathology , Image Enhancement/methods , Microelectrodes/adverse effects , Microscopy, Fluorescence/methods , Neurons/pathology , Animals , Equipment Failure Analysis/methods , Foreign-Body Reaction/etiology , Rats , Rats, Sprague-Dawley , Surface Properties
3.
J Biomed Mater Res A ; 68(1): 177-86, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14661263

ABSTRACT

Recent efforts in our laboratory have focused on developing methods for immobilizing bioactive peptides to low cell-adhesive dextran monolayer coatings and promoting biospecific cell adhesion for biomaterial implant applications. In the current study, this dextran-based bioactive coating technology was developed for silicon, polyimide, and gold, the base materials utilized to fabricate our prototype neural implants. Chemical composition of all modified surfaces was verified by X-ray photoelectron spectroscopy (XPS). We observed that surface-immobilized dextran supported very little cell adhesion in vitro (24-h incubation with serum-supplemented medium) on all base materials. Inactive nonadhesion-promoting Gly-Arg-Ala-Asp-Ser-Pro peptides immobilized on dextran-coated materials promoted adhesion and spreading at low levels not significantly different from dextran-coated substrates. Arg-Gly-Asp (RGD) peptide-grafted surfaces were observed to promote substantial fibroblast and glial cell adhesion with minimal PC12 (neuronal cell) adhesion. In contrast, dextran-coated materials with surface-grafted laminin-based, neurite-promoting Ile-Lys-Val-Ala-Val (IKVAV) peptide promoted substantial neuron cell adhesion and minimal fibroblast and glial cell adhesion. It was concluded that neuron-selective substrates are feasible using dextran-based surface chemistry strategies. The chemical surface modifications could be utilized to establish a stable neural tissue-implant interface for long-term performance of neural prosthetic devices.


Subject(s)
Biocompatible Materials/chemical synthesis , Neurons , Prostheses and Implants , Amino Acid Sequence , Biocompatible Materials/chemistry , Dextrans , Oligopeptides , Silicon , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...