Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 15: 868089, 2022.
Article in English | MEDLINE | ID: mdl-35431800

ABSTRACT

Small heat shock protein 27 is a critically important chaperone, that plays a key role in several essential and varied physiological processes. These include thermotolerance, apoptosis, cytoskeletal dynamics, cell differentiation, protein folding, among others. Despite its relatively small size and intrinsically disordered termini, it forms large and polydisperse oligomers that are in equilibrium with dimers. This equilibrium is driven by transient interactions between the N-terminal region, the α-crystallin domain, and the C-terminal region. The continuous redistribution of binding partners results in a conformationally dynamic protein that allows it to adapt to different functions where substrate capture is required. However, the intrinsic disorder of the amino and carboxy terminal regions and subsequent conformational variability has made structural investigations challenging. Because heat shock protein 27 is critical for so many key cellular functions, it is not surprising that it also has been linked to human disease. Charcot-Marie-Tooth and distal hereditary motor neuropathy are examples of neurodegenerative disorders that arise from single point mutations in heat shock protein 27. The development of possible treatments, however, depends on our understanding of its normal function at the molecular level so we might be able to understand how mutations manifest as disease. This review will summarize recent reports describing investigations into the structurally elusive regions of Hsp27. Recent insights begin to provide the required context to explain the relationship between a mutation and the resulting loss or gain of function that leads to Charcot-Marie Tooth disease and distal hereditary motor neuropathy.

2.
Front Mol Biosci ; 7: 159, 2020.
Article in English | MEDLINE | ID: mdl-32766281

ABSTRACT

Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.

3.
Sci Rep ; 9(1): 12300, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444388

ABSTRACT

The human mitochondrial heat shock protein 60 (hsp60) is a tetradecameric chaperonin that folds proteins in the mitochondrial matrix. An hsp60 D3G mutation leads to MitCHAP-60, an early onset neurodegenerative disease while hsp60 V72I has been linked to SPG13, a form of hereditary spastic paraplegia. Previous studies have suggested that these mutations impair the protein folding activity of hsp60 complexes but the detailed mechanism by which these mutations lead the neuromuscular diseases remains unknown. It is known, is that the ß-subunit of the human mitochondrial ATP synthase co-immunoprecipitates with hsp60 indicating that the ß-subunit is likely a substrate for the chaperonin. Therefore, we hypothesized that hsp60 mutations cause misfolding of proteins that are critical for aerobic respiration. Negative-stain electron microscopy and DLS results suggest that the D3G and V72I complexes fall apart when treated with ATP or ADP and are therefore unable to fold denatured substrates such as α-lactalbumin, malate dehydrogenase (MDH), and the ß-subunit of ATP synthase in in-vitro protein-folding assays. These data suggests that hsp60 plays a crucial role in folding important players in aerobic respiration such as the ß-subunit of the ATP synthase. The hsp60 mutations D3G and V72I impair its ability to fold mitochondrial substrates leading to abnormal ATP synthesis and the development of the MitCHAP-60 and SPG13 neuromuscular degenerative disorders.


Subject(s)
Chaperonin 60/genetics , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Protein Folding , Protein Subunits/chemistry , Protein Subunits/metabolism , Spastic Paraplegia, Hereditary/genetics , Chaperonin 60/metabolism , Dynamic Light Scattering , Humans , Lactalbumin/chemistry , Lactalbumin/metabolism , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Neurodegenerative Diseases , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...