Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837906

ABSTRACT

Chile peppers (Capsicum annuum L.) are good sources of vitamins and minerals that can be included in the diet to mitigate nutritional deficiencies. Metabolomics examines the metabolites involved in biological pathways to understand the genes related to complex phenotypes such as the nutritional quality traits. The current study surveys the different metabolites present in jalapeño ('NuMex Pumpkin Spice') and serrano ('NuMex LotaLutein') type chile peppers grown in New Mexico using a widely targeted metabolomics approach, with the 'NuMex LotaLutein' as control. A total of 1088 different metabolites were detected, where 345 metabolites were differentially expressed; 203 (59%) were downregulated and 142 (41%) were upregulated (i.e., relative metabolite content is higher in 'NuMex Pumpkin Spice'). The upregulated metabolites comprised mostly of phenolic acids (42), flavonoids (22), and organic acids (13). Analyses of principal component (PC) and orthogonal partial least squares demonstrated clustering based on cultivars, where at least 60% of variation was attributed to the first two PCs. Pathway annotation identified 89 metabolites which are involved in metabolic pathways and the biosynthesis of secondary metabolites. Altogether, metabolomics provided insights into the different metabolites present which can be targeted for breeding and selection towards the improvement of nutritional quality traits in Capsicum.

2.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208082

ABSTRACT

Cannabidiol (CBD) is a hydrophobic non-psychoactive compound with therapeutic characteristics. Animal and human studies have shown its poor oral bioavailability in vivo, and the impact of consuming lipid-soluble CBD with and without food on gut bioaccessibility has not been explored. The purpose of this research was to study the bioaccessibility of CBD after a three-phase upper digestion experiment with and without food, and to test lipase activity with different substrate concentrations. Our results showed that lipase enzyme activity and fatty acid absorption increased in the presence of bile salts, which may also contribute to an increase in CBD bioaccessibility. The food matrix used was a mixture of olive oil and baby food. Overall, the fed-state digestion revealed significantly higher micellarization efficiency for CBD (14.15 ± 0.6% for 10 mg and 22.67 ± 2.1% for 100 mg CBD ingested) than the fasted state digestion of CBD (0.65 ± 0.7% for 10 mg and 0.14 ± 0.1% for 100 mg CBD ingested). The increase in bioaccessibility of CBD with food could be explained by the fact that micelle formation from hydrolyzed lipids aid in bioaccessibility of hydrophobic molecules. In conclusion, the bioaccessibility of CBD depends on the food matrix and the presence of lipase and bile salts.


Subject(s)
Bile Acids and Salts/metabolism , Cannabidiol/pharmacokinetics , Food , Lipase/metabolism , Biological Availability , Cannabidiol/pharmacology , Digestion , Food-Drug Interactions , Humans , In Vitro Techniques , Lipid Metabolism , Micelles
3.
Planta ; 231(2): 233-44, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19898977

ABSTRACT

Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in V (max) and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules.


Subject(s)
Carbon/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Medicago sativa/enzymology , Medicago sativa/genetics , Nitrogen/metabolism , Root Nodules, Plant/enzymology , Allosteric Regulation/genetics , Blotting, Western , Carbohydrate Metabolism/genetics , Chromatography, Ion Exchange , Gene Expression Profiling , Genes, Plant/genetics , Medicago sativa/microbiology , Multigene Family , Nitrogen Fixation/genetics , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/physiology , Solubility , Starch/metabolism , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...