Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(11): e0141564, 2015.
Article in English | MEDLINE | ID: mdl-26529101

ABSTRACT

Emerging data suggest that Electro-Convulsive Treatment (ECT) may reduce depressive symptoms by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF). Yet, conflicting findings have been reported. For this reason we performed a systematic review and meta-analysis of the preclinical and clinical literature on the association between ECT treatment (ECS in animals) and changes in BDNF concentrations and their effect on behavior. In addition, regional brain expression of BDNF in mouse and human brains were compared using Allen Brain Atlas. ECS, over sham, increased BDNF mRNA and protein in animal brain (effect size [Hedge's g]: 0.38-0.54; 258 effect-size estimates, N = 4,284) but not in serum (g = 0.06, 95% CI = -0.05-0.17). In humans, plasma but not serum BDNF increased following ECT (g = 0.72 vs. g = 0.14; 23 effect sizes, n = 281). The gradient of the BDNF increment in animal brains corresponded to the gradient of the BDNF gene expression according to the Allen brain atlas. Effect-size estimates were larger following more ECT sessions in animals (r = 0.37, P < .0001) and in humans (r = 0.55; P = 0.05). There were some indications that the increase in BDNF expression was associated with behavioral changes in rodents, but not in humans. We conclude that ECS in rodents and ECT in humans increase BDNF concentrations but this is not consistently associated with changes in behavior.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor/biosynthesis , Depression , Gene Expression Regulation , RNA, Messenger/biosynthesis , Animals , Depression/metabolism , Depression/physiopathology , Depression/therapy , Electric Stimulation Therapy , Humans , Mice
2.
Transl Psychiatry ; 2: e200, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23212584

ABSTRACT

There is growing evidence that obesity represents a risk for enhanced gray matter (GM) density changes comparable to those demonstrated for mild cognitive impairment in the elderly. However, it is not clear what mechanisms underlie this apparent alteration in brain structure of overweight subjects and to what extent these changes can already occur in the adolescent human brain. In the present volumetric magnetic resonance imaging study, we investigated GM changes and serum levels of neuron-specific enolase (NSE), a marker for neuronal injury, in a set of overweight/obese subjects and controls. We report a negative correlation for overweight and obese subjects between serum NSE and GM density in hippocampal and cerebellar regions. To validate our neuroimaging findings, we complement these data with NSE gene expression information obtained from the Allen Brain atlas. GM density changes were localized in brain areas that mediate cognitive function-the hippocampus associated with memory performance, and the cognitive cerebellum (lateral posterior lobes) associated with executive, spatial and linguistic processing. The data of our present study highlight the importance of extending current research on cognitive function and brain plasticity in the elderly in the context of obesity to young adult subjects and include serum biomarkers to validate imaging findings generally.


Subject(s)
Cerebellum/enzymology , Hippocampus/enzymology , Neuronal Plasticity , Obesity/blood , Overweight/blood , Phosphopyruvate Hydratase/blood , Adult , Biomarkers/blood , Cerebellum/pathology , Cerebellum/physiopathology , Female , Gene Expression , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging , Male , Obesity/genetics , Overweight/genetics , Phosphopyruvate Hydratase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...