Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 360: 127633, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35863602

ABSTRACT

Two-stage anaerobic digestion (TSAD) systems have been studied on a laboratory scale for about 50 years. However, they have not yet reached industrial scale despite their potential for future energy systems. This review provides an analysis of the TSAD technology, including the influence of process parameters on biomass conversion rates. The most common substrate (35.2% of the 38 selected studies) used in the analysed data was in the category of rapidly hydrolysable industrial waste with an average dry matter content of 7.24%. The highest methane content of 85% was reached when digesting food waste in a combination of two mesophilic continuously stirred tank reactors with an acidic (pH 5.5) first stage and alkaline (pH 7) second stage. Therefore, the review shows the limitations of the TSAD technology, future research directions, and the effect of integration of TSAD systems into the current strategy to reduce greenhouse gas emissions.


Subject(s)
Bioreactors , Refuse Disposal , Anaerobiosis , Biofuels , Food , Methane
2.
Bioresour Technol ; 360: 127612, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35840023

ABSTRACT

Biomethane plays a key role in achieving decarbonization and sustainable development goals. According to the objectives that arise, choosing the most suitable production system allows optimization of production, thereby reducing CO2 emissions. In this study, three biomethane production scenario life cycle assessments were compared to determine which would maintain the lowest CO2 emissions. Conventional anaerobic digestion and an innovative process called two-stage high pressure anaerobic digestion were considered. These methods were combined with two upgrading processes: water scrubbing and biological upgrading. Cattle manure and sugar beets were used as substrates for the process. Emissions were 805.6 gCO2eq/m3CH4 for the traditional biogas production process combined with water scrubbing and 450.3 gCO2eq/m3CH4 for the two-stage anaerobic digestion process combined with biological upgrading. Furthermore, the analysis demonstrated that these values would be reduced by 29.5 % and 48.0 % if electrical energy were produced using only renewable energy sources.


Subject(s)
Carbon Dioxide , Methane , Anaerobiosis , Animals , Biofuels , Cattle , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...