Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(6-1): 064210, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464596

ABSTRACT

We demonstrate that several nonvariational continuum models commonly used to describe active matter as well as other active systems exhibit nongeneric behavior: each model supports asymmetric but stationary localized states even in the absence of pinning at heterogeneities. Moreover, such states only begin to drift following a drift-transcritical bifurcation as the activity increases. Asymmetric stationary states should only exist in variational systems, i.e., in models with gradient structure. In other words, such states are expected in passive systems, but not in active systems where the gradient structure of the model is broken by activity. We identify a "spurious" gradient dynamics structure of these models that is responsible for this nongeneric behavior, and determine the types of additional terms that render the models generic, i.e., with asymmetric states that appear via drift-pitchfork bifurcations and are generically moving. We provide detailed illustrations of our results using numerical continuation of resting and steadily drifting states in both generic and nongeneric cases.

2.
J Phys Condens Matter ; 33(11): 115401, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33246322

ABSTRACT

We show that one can employ well-established numerical continuation methods to efficiently calculate the phase diagram for thermodynamic systems described by a suitable free energy functional. In particular, this involves the determination of lines of phase coexistence related to first order phase transitions and the continuation of triple points. To illustrate the method we apply it to a binary phase-field-crystal model for the crystallisation of a mixture of two types of particles. The resulting phase diagram is determined for one- and two-dimensional domains. In the former case it is compared to the diagram obtained from a one-mode approximation. The various observed liquid and crystalline phases and their stable and metastable coexistence are discussed as well as the temperature-dependence of the phase diagrams. This includes the (dis)appearance of critical points and triple points. We also relate bifurcation diagrams for finite-size systems to the thermodynamics of phase transitions in the infinite-size limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...