Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Acc Chem Res ; 53(1): 265-275, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31877026

ABSTRACT

In this Account, we chronicle our tortuous but ultimately fruitful quest to synthesize a [C-F-C]+ fluoronium ion in solution, thus providing the last piece of the organic halonium ion puzzle. Inspiration for the project can be traced all the way back to the graduate career of the corresponding author, wherein the analogy between a [C-H-C]+ "hydrido" bridge and a hypothetical [C-F-C]+ bridge was first noted. The earliest attempt to construct a bicyclo[5.3.3]tridecane-based fluoronium ion (based on the analogous hydrido bridged cation) proved to be synthetically difficult. A subsequent attempt involving a 1,8-substituted naphthalene ring was theoretically naïve in retrospect, and it resulted in a classical benzylic carbocation instead. A biphenyl-based substrate, although computationally sound, proved to be kinetically untenable. At last, after some tweaking (including a dead-end detour into a fluoraadamantane skeleton), we finally achieved success with a highly rigid, semicage precursor based on the decahydro-1,4:5,8-dimethanonaphthalene system. This strained substrate possessed a triflate leaving group to enhance its solvolytic reactivity. Detailed isotopic labeling and kinetic studies supported the generation of a symmetrical [C-F-C]+ bridge; interesting solution behavior allowed the manipulation of the rate-determining step for solvolysis depending on solvent nucleophilicity. After initial generation as a transient intermediate, the fluoronium ion was later produced as a stable species in solution and was fully characterized by 19F, 1H, and 13C NMR, with the resultant species displaying evident Cssymmetry through coordination of a molecule of SbF5. This remarkable ion proved stable to -30 °C. We also address a disagreement surrounding the nomenclature of fluoronium ions in particular and its potential impact upon the naming of onium ions in general. We strove to highlight the dangers of confusing the arbitrary concept of calculated partial charge with IUPAC nomenclature. Finally, we discuss future directions, for example, the synthesis of a fluoronium ion in which fluorine resides within an aromatic ring.

2.
Angew Chem Int Ed Engl ; 57(7): 1924-1927, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29316122

ABSTRACT

We report the first spectroscopic evidence for a [C-F-C]+ fluoronium ion in solution. Extensive NMR studies (19 F, 1 H, 13 C) characterize a symmetric cage-like species in which fluorine exhibits substantial covalent bonding to each of the two carbon atoms involved in the three-center interaction. Experimental NMR data comport well with calculated values to lend credence to the structural assignment. As the culminating experiment, a Saunders isotopic perturbation test confirmed the symmetric structure. Congruent with the trend in other types of onium ions, the calculated charge at fluorine moves in a more positive (less negative) direction from the neutral. It is this important trend that explains in part the extraordinary historical difficulty in making theoretical predictions of fluoronium ions come true in solution, and why it takes fluorine captured in a cage to produce, finally, a stable ion and complete the historical arc of the organic halonium ion story.

3.
Angew Chem Int Ed Engl ; 57(11): 2758-2766, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29141116

ABSTRACT

Cage molecules have long been employed to trap reactive or transient species, as their rigid nature allows them to enforce situations that otherwise would not persist. In this Minireview, we discuss our use of rigid cage structures to investigate the close noncovalent interactions of fluorine with other functional groups and determine how mutual proximity affects both physical properties and reactivity. Unusual covalent interactions of fluorine are also explored: the cage can close to form the first solution-phase C-F-C fluoronium ion.

4.
J Am Chem Soc ; 139(42): 14913-14916, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28992687

ABSTRACT

Electrophilic aromatic substitution (EAS) represents one of the most important classes of reactions in all of chemistry. One of the "iron laws" of EAS is that an electron-rich aromatic ring will react more rapidly than an electron-poor ring with suitable electrophiles. In this report, we present unique examples of electron-deficient arenes instead undergoing preferential substitution in intramolecular competition with more electron-rich rings. These results were made possible by exploiting the heretofore unknown propensity of a hydrogen-bonding OH-arene interaction to switch to the alternative HO-arene interaction in order to provide activation. In an extreme case, this through-space HO-arene activation is demonstrated to overcome the deactivating effect of a trifluoromethyl substituent, making an otherwise highly electron-deficient ring the site of exclusive reactivity in competition experiments. Additionally, the HO-arene activation promotes tetrabromination of an increasingly more electron-deficient arene before the unactivated "control" ring undergoes monobromination. It is our hope that these results will shed light on biological interactions as well as provide new strategies for the electrophilic substitution of aromatic rings.

5.
Angew Chem Int Ed Engl ; 55(29): 8266-9, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27145463

ABSTRACT

It is known that the fluoro group has only a small effect on the rates of electrophilic aromatic substitutions. Imagine instead a carbon-fluorine (C-F) bond positioned tightly over the π cloud of an aryl ring-such an orthogonal, noncovalent arrangement could instead stabilize a positively charged arene intermediate or transition state, giving rise to novel electrophilic aromatic substitution chemistry. Herein, we report the synthesis and study of molecule 1, containing a rigid C-F⋅⋅⋅Ar interaction that plays a prominent role in both its reaction chemistry and spectroscopy. For example, we established that the C-F⋅⋅⋅Ar interaction can bring about a >1500 fold increase in the relative rate of an aromatic nitration reaction, affording functionalization on the activated ring exclusively. Overall, these results establish fluoro as a through-space directing/activating group that complements the traditional role of fluorine as a slightly deactivating aryl substituent in nitrations.

6.
J Am Chem Soc ; 137(35): 11476-90, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26275357

ABSTRACT

Recently, we reported evidence for the generation of a symmetrical fluoronium ion (a [C-F-C](+) interaction) in solution from a cage-like precursor, relying heavily on a single isotopic-labeling experiment. Paraphrasing the axiom that a strong claim must be met by as much evidence as possible, we seek to expand upon our initial findings with comprehensive labeling studies, rate measurements, kinetic isotope effect (KIE) experiments, synthetic studies, and computations. We also chronicle the development of the system, our thought process, and how it evolved from a tantalizing indication of fluoronium ion assistance in a dibromination reaction to the final, optimized system. Our experiments show secondary KIE experiments that are fully consistent with a transition state involving fluorine participation; this is also confirmed by a significant remote isotope effect. Paired with DFT calculations, the KIE experiments are indicative of the trapping of a symmetrical intermediate. Additionally, starting with an epimeric in-triflate precursor that hydrolyzes through a putative frontside SNi mechanism involving fluorine participation, KIE studies indicate that an identical intermediate is trapped (the fluoronium ion). Studies also show that the rate-determining step of the fluoronium forming SN1 reaction can be changed on the basis of solvent and additives. We also report the synthesis of a nonfluorinated control substrate to measure a relative anchimeric role of the fluorine atom in hydrolysis versus µ-hydrido bridging. After extensive testing, we can make the remarkable conclusion that our system reacts solely through a "tunable" SN1 mechanism involving a fluoronium ion intermediate. Alternative scenarios, such as SN2 reactivity, do not occur even under forced conditions where they should be highly favored.

7.
J Org Chem ; 80(9): 4803-7, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25822846

ABSTRACT

We have synthesized a molecule containing a tight hydrogen-bonding interaction between an alcohol and a nonconjugated π-system. The strength of this hydrogen bond results in a large red shift, nearly 189 cm(-1), on the alcohol stretching frequency in the IR spectrum in comparison to a free alcohol control. The interaction is notable in that it possesses a better defined intramolecular hydrogen bond compared to the usual molecules for which it is noted, such as syn-7-norbornenol. This interaction was studied through the use of IR and NMR spectroscopy, X-ray crystallography, and molecular modeling calculations.


Subject(s)
Alkenes/chemistry , Hydroxides/chemistry , Quantum Theory , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Protons , Spectrophotometry, Infrared
8.
J Org Chem ; 78(21): 11082-6, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24073747

ABSTRACT

We explore in detail the iron-catalyzed benzylic fluorination of substrates containing aromatic rings and electron-withdrawing groups positioned ß to one another, thus providing direct access to ß-fluorinated adducts. This operationally convenient process can be thought of not only as a contribution to the timely problem of benzylic fluorination but also as a functional equivalent to a conjugate addition of fluoride, furnishing products in moderate to good yields and in excellent selectivity.

9.
Org Lett ; 15(7): 1722-4, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23527764

ABSTRACT

Direct C-F functionalization of benzylic sp(3) C-H bonds is a synthetic challenge that has yet to be propitiously overcome. A mild, one-pot synthesis of monofluorinated benzylic substrates is reported with commercially available iron(II) acetylacetonate and Selectfluor in good to excellent yields and selectivity. A convenient route to ß-fluorinated products of 3-aryl ketones is also highlighted, providing a synthetic equivalent to the difficult to accomplish conjugate addition of fluoride to α,ß-unsaturated ketones.

10.
Angew Chem Int Ed Engl ; 51(42): 10580-3, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22976771

ABSTRACT

A group effort: Reported is the title reaction using a polycomponent catalytic system involving commercially available Selectfluor, a putative radical precursor N-hydroxyphthalimide, an anionic phase-transfer catalyst (KB(C(6)F(5))(4)), and a copper(I) bis(imine). The catalyst system formed leads to monofluorinated compounds selectively (see example) without the necessity for an excess of the alkane substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...