Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 400(10): 3331-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21465098

ABSTRACT

This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile-butadiene-styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C(2) Swan system (0,0) band in polymers containing no C-C (POM), few C-C (POE), or aromatic C-C linkages led us to the conclusion that the C(2) signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

2.
J Colloid Interface Sci ; 353(1): 188-95, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20888571

ABSTRACT

Monte Carlo simulations with an explicit description of counterions are performed to investigate the adsorption of ionic surfactants at the interface between water and soft hydrophobic and penetrable particles. The surfactant molecules are represented at a coarse-grained level, their hydrophobic tails interact with each other through a Lennard-Jones potential, whereas their hydrophilic head and their counterions interact through a Coulombic potential. Two colloidal hydrophobic particles interact with the surfactant hydrophobic chains through a modified Lennard-Jones potential. By increasing the surfactant confinement between non-adsorbing colloidal particles, micellization is achieved and the micelle aggregation number is found to increase. Adsorption isotherms are determined for various interaction strengths between the surfactants and the particles. It is found that increasing this parameter increases the level of the adsorption plateau. The adsorbed surfactant molecules form conical aggregates which evolve into elongated structures by increasing the surfactant concentration and the strength of the interaction. The presence of micelles in solution is shown to be controlled by the level of adsorption and saturation of the hydrophobic particle surfaces. This study provides for the first time a comparison of surfactant micellization in solution and aggregate formation at one interface by considering hydrophobic and electrostatic interactions.

3.
J Phys Chem B ; 114(28): 9135-47, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20578758

ABSTRACT

The distribution of an anionic surfactant, sodium dodecyl sulfate (SDS), in waterborne acrylic films was investigated, focusing on the effects of particle composition and size, and pH of the latex. The observed surfactant distributions could be classified in two categories: homogeneous and heterogeneous, the latter showing SDS aggregates. The shape of the profiles was related to the stability of the latex during drying, at short interparticular distances. The stability of the latex was determined by the presence or not of fixed charges at the surface of the particles. The latices with particles carrying neutralized acrylic acid at high pH (COO(-)) led to homogeneous distributions, whereas the latices with acrylic acid at low pH (COOH) or without acrylic acid led to heterogeneous distributions. Our interpretation is that the stable latices present a narrow network of paths between particles at high polymer volume fraction, limiting the mobility of the surfactant, whereas in the less stable latices wider routes between flocs allow enough mobility for large aggregate formation. Thermal treatments of the dry films confirmed the strong confinement of the surfactant in the dense film structure obtained at high pH and the more open structure, allowing easier surfactant transport and oxygen penetration, observed at low pH. In order to account for the shapes of the profiles more quantitatively, a model was developed based on the diffusion of the surfactant and its transport by the drying front. It was found that the apparent diffusion coefficient of SDS micelles had to be lowered to a great extent (D = 10(-13)-10(-14) m(2)/s) during drying in order to explain aggregate formation. It should be even lower (D = 10(-15) m(2)/s) to interpret homogeneous surfactant profiles. These results are consistent with our hypothesis of the key importance of the surfactant mobility during drying.

SELECTION OF CITATIONS
SEARCH DETAIL
...