Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(3): 2089-2101, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38163763

ABSTRACT

The self-assembled state of molecules plays a pivotal role in determining how inherent molecular properties transform and give rise to supramolecular functionalities and has long attracted attention. However, understanding the influence of morphologies spanning the nano- to mesoscopic scales of supramolecular assemblies derived from identical intermolecular interactions has been notoriously challenging due to dynamic structural change and monomer exchange of assemblies in solution. In this study, we demonstrate that curved one-dimensional molecular assemblies (supramolecular polymers) of lengths of around 70-200 nm, originating from the same luminescent molecule, exhibit distinct photoluminescent properties when they form closed circular structures (toroids) versus when they possess chain termini in solution (random coils). By exploiting the difference in kinetic stability between the toroids and random coils, we developed a dialysis protocol to selectively purify the former. It was revealed that these terminus-free closed structures manifest higher energy and more efficient luminescence compared with their mixed state with random coils. Time-resolved fluorescence measurements unveiled that random coils, due to their dynamic structural fluctuation in solution, generate local defects throughout the main chain, leading to luminescence from lower energy levels. In mixtures of the two assemblies, luminescence was exclusively observed from such a lower energy level of random coils, a result attributed to energy transfer between the assemblies. This work emphasizes that for identical supramolecular assemblies, only averaged properties have traditionally been considered, but their structures at the nano- to mesoscopic scale are important especially if they have a certain degree of shape persistency even in solution.

2.
J Am Chem Soc ; 145(41): 22563-22576, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37796243

ABSTRACT

Polymorphism, a phenomenon whereby disparate self-assembled products can be formed from identical molecules, has incited interest in the field of supramolecular polymers. Conventionally, the monomers that constitute supramolecular polymers are engineered to facilitate one-dimensional aggregation and, consequently, their polymorphism surfaces primarily when the states of assembly differ significantly. This engenders polymorphs of divergent dimensionalities such as one- and two-dimensional aggregates. Notwithstanding, realizing supramolecular polymer polymorphism, wherein polymorphs maintain one-dimensional aggregation, persists as a daunting challenge. In this work, we expound upon the manifestation of two supramolecular polymer polymorphs formed from a large discotic supramolecular monomer (rosette), which consists of six hydrogen-bonded molecules with an extended π-conjugated core. These polymorphs are generated in mixtures of chloroform and methylcyclohexane, attributable to distinctly different disc stacking arrangements. The face-to-face (minimal displacement) and offset (large displacement) stacking arrangements can be predicated on their distinctive photophysical properties. The face-to-face stacking results in a twisted helix structure. Conversely, the offset stacking induces inherent curvature in the supramolecular fiber, thereby culminating in a hollow helical coil (helicoid). While both polymorphs exhibit bistability in nonpolar solvent compositions, the face-to-face stacking attains stability purely in a kinetic sense within a polar solvent composition and undergoes conversion into offset stacking through a dislocation of stacked rosettes. This occurs without the dissociation and nucleation of monomers, leading to unprecedented helicoidal folding of supramolecular polymers. Our findings augment our understanding of supramolecular polymer polymorphism, but they also highlight a distinctive method for achieving helicoidal folding in supramolecular polymers.

3.
Chem Sci ; 14(12): 3270-3276, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36970099

ABSTRACT

A judicious combination of ring-closing supramolecular polymerization and secondary nucleation can hierarchically organize a diphenylnaphthalene barbiturate monomer bearing a 3,4,5-tri(dodecyloxy)benzyloxy unit into self-assembled nano-polycatenanes composed of nanotoroids. In our previous study, nano-polycatenanes of variable length have been formed uncontrollably from the monomer that provides nanotoroids with sufficiently wide inner void space wherein secondary nucleation is driven by non-specific solvophobic interaction. In this study, we found that the elongation of the alkyl chain length of the barbiturate monomer decreases the inner void space of nanotoroids while increasing the frequency of secondary nucleation. These two effects resulted in an increase in the yield of nano-[2]catenane. This unique property observed in our self-assembled nanocatenanes might be extended to a controlled synthesis of covalent polycatenanes using non-specific interactions.

4.
Inorg Chem ; 61(18): 6742-6749, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35471920

ABSTRACT

Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol-gel synthesis. While sol-gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol-gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide-nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phase-pure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol-gel synthesis of Fe3C nanoparticles.

5.
Angew Chem Int Ed Engl ; 60(52): 26986-26993, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34623014

ABSTRACT

Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid π-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures.

6.
J Am Chem Soc ; 143(15): 5845-5854, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33755463

ABSTRACT

Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.


Subject(s)
Ethylenes/chemistry , Polymers/chemistry , Ultraviolet Rays , Barbiturates/chemistry , Isomerism , Macromolecular Substances/chemistry , Microscopy, Atomic Force , Polymerization , Temperature , Thermodynamics
9.
Nature ; 583(7816): 400-405, 2020 07.
Article in English | MEDLINE | ID: mdl-32669695

ABSTRACT

Mechanical interlocking of molecules (catenation) is a nontrivial challenge in modern synthetic chemistry and materials science1,2. One strategy to achieve catenation is the design of pre-annular molecules that are capable of both efficient cyclization and of pre-organizing another precursor to engage in subsequent interlocking3-9. This task is particularly difficult when the annular target is composed of a large ensemble of molecules, that is, when it is a supramolecular assembly. However, the construction of such unprecedented assemblies would enable the visualization of nontrivial nanotopologies through microscopy techniques, which would not only satisfy academic curiosity but also pave the way to the development of materials with nanotopology-derived properties. Here we report the synthesis of such a nanotopology using fibrous supramolecular assemblies with intrinsic curvature. Using a solvent-mixing strategy, we kinetically organized a molecule that can elongate into toroids with a radius of about 13 nanometres. Atomic force microscopy on the resulting nanoscale toroids revealed a high percentage of catenation, which is sufficient to yield 'nanolympiadane'10, a nanoscale catenane composed of five interlocked toroids. Spectroscopic and theoretical studies suggested that this unusually high degree of catenation stems from the secondary nucleation of the precursor molecules around the toroids. By modifying the self-assembly protocol to promote ring closure and secondary nucleation, a maximum catenation number of 22 was confirmed by atomic force microscopy.

10.
Nat Commun ; 11(1): 1623, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32238806

ABSTRACT

Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette.

11.
J Am Chem Soc ; 141(33): 13196-13202, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31348852

ABSTRACT

Kinetically formed metastable molecular assemblies have attracted increasing interest especially in the field of supramolecular polymers. In most cases, metastable assemblies are ensemblies of aggregates based on the same supramolecular motif but with different lengths or sizes, and therefore their kinetic stabilities are experimentally indistinguishable. Herein, we demonstrate a topological effect on kinetic stabilities in a complex mixture of metastable supramolecular polymers. Our azobenzene-incorporated monomer upon heating in nonpolar solvent at ambient temperature kinetically forms complex mixtures of supramolecular polymers with cyclized and open-ended randomly coiled topologies. Upon further heating, we obtained thermodynamically stable twisted fibrils organizing into crystalline fibers. Through the direct visualization of the complex supramolecular polymer mixtures by atomic force microscopy, we demonstrate that the cyclized supramolecular polymer has superior kinetic stability compared to the open-ended species toward the thermal transformation into twisted fibrils. Since the superior kinetic stability of the cyclized species can be attributed to the absence of aggregate termini, we could convert them fully into the thermodynamic species through photoinduced opening of the cyclized structures.

12.
J Colloid Interface Sci ; 535: 1-7, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30268892

ABSTRACT

Surfactant crystallisation is important in many applications in the food, consumer product and medical sectors. However, these processes are not well understood. In particular, surfactant crystallisation can be detrimental to the stability of detergent formulations, such as dish liquid products, resulting in a turbid solution that fails appearance criteria. With the rising global demand for detergent products, understanding the factors that influence formulation stability is of increasing importance. To enable industry to build more robust formulations, it is important to understand the underlying chemistry of the crystallisation process. Here, a model system containing anionic (sodium dodecyl sulfate, SDS) and amphoteric (N,N-dimethyldodecylamine N-oxide, DDAO) surfactants, at concentrations typical of dish liquid products, is studied. Variable temperature 1H nuclear magnetic resonance (NMR) spectroscopy and small-angle X-ray scattering (SAXS) is used to probe the compositional and structural properties of this system, as a function of pH. On cooling, at pH 9, a mixture of hydrated crystals, predominately composed of SDS, and micelles containing both surfactants, have been observed prior to complete freezing. At pH 2, both surfactants appear to undergo a simultaneous phase transition, resulting in the removal of micelles and the formation of hydrated crystals of mixed composition.

13.
Sci Adv ; 4(9): eaat8466, 2018 09.
Article in English | MEDLINE | ID: mdl-30202785

ABSTRACT

Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization. When using a slow cooling rate, we obtained misfolded fibers containing a minor amount of helical domains that folded on a time scale of days into unique topologies reminiscent of the protein tertiary structures. Thermodynamic analysis of fibers with varying degrees of folding revealed that the folding is accompanied by a large enthalpic gain. The self-folding proceeds via ordering of misfolded domains in the main chain using helical domains as templates, as fully misfolded fibers prepared by a fast cooling rate do not self-fold.


Subject(s)
Polymers/chemistry , Barbiturates/chemistry , Cyclohexanes/chemistry , Dynamic Light Scattering , Kinetics , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Polymerization , Protein Structure, Tertiary , Scattering, Small Angle , Spectrophotometry, Ultraviolet , Thermodynamics , X-Ray Diffraction
14.
J Colloid Interface Sci ; 527: 260-266, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29800875

ABSTRACT

HYPOTHESIS: At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. EXPERIMENTS: Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N-dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. FINDINGS: The presence of DDAO lowered the crystallisation temperature of a 20 wt% SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H2O or SDS·H2O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H2O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation.

15.
Phys Chem Chem Phys ; 20(5): 3373-3380, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29260811

ABSTRACT

Contrast-variation small-angle neutron scattering (CV-SANS), small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) measurements of diffusion and isothermal titration calorimetry (ITC) are used to gain insight into the aggregation of an alkyl-C60 derivative, molecule 1, in n-hexane, n-decane and toluene as a function of concentration and temperature. Results point to an associative mechanism of aggregation similar to other commonly associating molecules, including non-ionic surfactants or asphaltenes in non-aqueous solvents. Little aggregation is detected in toluene, but small micelle-like structures form in n-alkane solvents, which have a C60-rich core and alkyl-rich shell. The greatest aggregation extent is found in n-hexane, and at 0.1 M the micelles of 1 comprise around 6 molecules at 25 °C. These micelles become smaller when the concentration is lowered, or if the solvent is changed to n-decane. The solution structure is also affected by temperature, with a slightly larger aggregation extent at 10 °C than at 25 °C. At higher concentrations, for example in solutions of 1 above 0.3 M in n-decane, a bicontinuous network becomes apparent. Overall, these findings aid our understanding of the factors driving the assembly of alkyl-π-conjugated hydrophobic amphiphiles such as 1 in solution and thereby represent a step towards the ultimate goal of exploiting this phenomenon to form materials with well-defined order.

16.
Nat Commun ; 8: 15254, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28488694

ABSTRACT

Unlike classical covalent polymers, one-dimensionally (1D) elongated supramolecular polymers (SPs) can be encoded with high degrees of internal order by the cooperative aggregation of molecular subunits, which endows these SPs with extraordinary properties and functions. However, this internal order has not yet been exploited to generate and dynamically control well-defined higher-order (secondary) conformations of the SP backbone, which may induce functionality that is comparable to protein folding/unfolding. Herein, we report light-induced conformational changes of SPs based on the 1D exotic stacking of hydrogen-bonded azobenzene hexamers. The stacking causes a unique internal order that leads to spontaneous curvature, which allows accessing conformations that range from randomly folded to helically folded coils. The reversible photoisomerization of the azobenzene moiety destroys or recovers the curvature of the main chain, which demonstrates external control over the SP conformation that may ultimately lead to biological functions.

17.
Angew Chem Int Ed Engl ; 55(34): 9890-3, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27383466

ABSTRACT

Molecular self-assembly primarily occurs in solution. To better understand this process, techniques capable of probing the solvated state are consequently required. Small-angle scattering (SAS) has a proven ability to detect and characterize solutions, but it is rarely applied to more complex assembly shapes. Here, small-angle X-ray and neutron scattering are applied to observe toroidal assemblies in solution. Combined analysis confirms that the toroids have a core-shell structure, with a π-conjugated core and an alkyl shell into which solvent penetrates. The dimensions determined by SAS agree well with those obtained by (dried-state) atomic force microscopy. Increasing the number of naphthalene units in the molecular building block yields greater rigidity, as evidenced by a larger toroid and a reduction in solvent penetration into the shell. The detailed structural analysis demonstrates the applicability of SAS to monitor complex solution-based self-assembly.

18.
Adv Colloid Interface Sci ; 230: 54-69, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26888600

ABSTRACT

Graphene is the newest member of the carbon family, and has revolutionized materials science especially in the field of polymer nanocomposites. However, agglomeration and uniform dispersion remains an Achilles' heel (even an elephant in the room), hampering the optimization of this material for practical applications. Chemical functionalization of graphene can overcome these hurdles but is often rather disruptive to the extended pi-conjugation, altering the desired physical and electronic properties. Employing surfactants as stabilizing agents in latex technology circumvents the need for chemical modification allowing for the formation of nanocomposites with retained graphene properties. This article reviews the recent progress in the use of surfactants and polymers to prepare graphene/polymer nanocomposites via latex technology. Of special interest here are surfactant structure-performance relationships, as well as background on the roles surfactant-graphene interactions for promoting stabilization.

19.
Nat Chem ; 6(8): 690-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25054938

ABSTRACT

Supramolecular assembly can yield ordered structures by taking advantage of the cumulative effect of multiple non-covalent interactions between adjacent molecules. The thermodynamic origin of many self-assembled structures in water is the balance between the hydrophilic and hydrophobic segments of the molecule. Here, we show that this approach can be generalized to use solvophobic and solvophilic segments of fully hydrophobic alkylated fullerene molecules. Addition of n-alkanes results in their assembly--due to the antipathy of C60 towards n-alkanes--into micelles and hexagonally packed gel-fibres containing insulated C60 nanowires. The addition of pristine C60 instead directs the assembly into lamellar mesophases by increasing the proportion of π-conjugated material in the mixture. The assembled structures contain a large fraction of optoelectronically active material and exhibit comparably high photoconductivities. This method is shown to be applicable to several alkyl-π-conjugated molecules, and can be used to construct organized functional materials with π-conjugated sections.


Subject(s)
Alkanes/chemistry , Fullerenes/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Thermodynamics
20.
Nat Commun ; 4: 1969, 2013.
Article in English | MEDLINE | ID: mdl-23736114

ABSTRACT

Nonvolatile room-temperature luminescent molecular liquids are a new generation of organic soft materials. They possess high stability, versatile optical properties, solvent-free fluid behaviour and can effectively accommodate dopant dye molecules. Here we introduce an approach to optimize anthracene-based liquid materials, focussing on enhanced stability, fluorescence quantum yield, colour tunability and processability, with a view to flexible electronic applications. Enveloping the anthracene core in low-viscosity branched aliphatic chains results in stable, nonvolatile, emissive liquid materials. Up to 96% efficient energy-transfer-assisted tunable emission is achieved by doping a minute amount of acceptor dye in the solvent-free state. Furthermore, we use a thermoresponsive dopant to impart thermally controllable luminescence colours. The introduced strategy leading to diverse luminescence colours at a single blue-light excitation can be an innovative replacement for currently used luminescent materials, providing useful continuous emissive layers in developing foldable devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...