Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 42(3): 458-469, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37127662

ABSTRACT

Inefficient knock-in of transgene cargos limits the potential of cell-based medicines. In this study, we used a CRISPR nuclease that targets a site within an exon of an essential gene and designed a cargo template so that correct knock-in would retain essential gene function while also integrating the transgene(s) of interest. Cells with non-productive insertions and deletions would undergo negative selection. This technology, called SLEEK (SeLection by Essential-gene Exon Knock-in), achieved knock-in efficiencies of more than 90% in clinically relevant cell types without impacting long-term viability or expansion. SLEEK knock-in rates in T cells are more efficient than state-of-the-art TRAC knock-in with AAV6 and surpass more than 90% efficiency even with non-viral DNA cargos. As a clinical application, natural killer cells generated from induced pluripotent stem cells containing SLEEK knock-in of CD16 and mbIL-15 show substantially improved tumor killing and persistence in vivo.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Knock-In Techniques , Transgenes/genetics
2.
Nat Commun ; 8(1): 1659, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162813

ABSTRACT

The role of Arc in synaptic plasticity and memory consolidation has been investigated for many years with recent evidence that defects in the expression or activity of this immediate-early gene may also contribute to the pathophysiology of brain disorders including schizophrenia and fragile X syndrome. These results bring forward the concept that reversing Arc abnormalities could provide an avenue to improve cognitive or neurological impairments in different disease contexts, but how to achieve this therapeutic objective has remained elusive. Here, we present results from a chemogenomic screen that probed a mechanistically diverse library of small molecules for modulators of BDNF-induced Arc expression in primary cortical neurons. This effort identified compounds with a range of influences on Arc, including promoting its acetylation-a previously uncharacterized post-translational modification of this protein. Together, our data provide insights into the control of Arc that could be targeted to harness neuroplasticity for clinical applications.


Subject(s)
Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Lysine/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Acetylation , Amino Acid Motifs , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cytoskeletal Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Neurons/chemistry , Neurons/metabolism , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...