Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Expert Rev Neurother ; 24(5): 487-496, 2024 May.
Article in English | MEDLINE | ID: mdl-38517280

ABSTRACT

INTRODUCTION: Primary headaches, including migraines and cluster headaches, are highly prevalent disorders that significantly impact quality of life. Several factors suggest a key role for the hypothalamus, including neuroimaging studies, attack periodicity, and the presence of altered homeostatic regulation. The orexins are two neuropeptides synthesized almost exclusively in the lateral hypothalamus with widespread projections across the central nervous system. They are involved in an array of functions including homeostatic regulation and nociception, suggesting a potential role in primary headaches. AREAS COVERED: This review summarizes current knowledge of the neurobiology of orexins, their involvement in sleep-wake regulation, nociception, and functions relevant to the associated symptomology of headache disorders. Preclinical reports of the antinociceptive effects of orexin-A in preclinical models are discussed, as well as clinical evidence for the potential involvement of the orexinergic system in headache. EXPERT OPINION: Several lines of evidence support the targeted modulation of orexinergic signaling in primary headaches. Critically, orexins A and B, acting differentially via the orexin 1 and 2 receptors, respectively, demonstrate differential effects on trigeminal pain processing, indicating why dual-receptor antagonists failed to show clinical efficacy. The authors propose that orexin 1 receptor agonists or positive allosteric modulators should be the focus of future research.


Subject(s)
Neuropeptides , Quality of Life , Humans , Orexins , Neuropeptides/pharmacology , Neuropeptides/physiology , Headache , Pain
2.
J Headache Pain ; 24(1): 123, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37679693

ABSTRACT

BACKGROUND: There is a bidirectional link between sleep and migraine, however causality is difficult to determine. This study aimed to investigate this relationship using data collected from a smartphone application. METHODS: Self-reported data from 11,166 global users (aged 18-81 years, mean: 41.21, standard deviation: 11.49) were collected from the Migraine Buddy application (Healint Pte. Ltd.). Measures included: start and end times of sleep and migraine attacks, and pain intensity. Bayesian regression models were used to predict occurrence of a migraine attack the next day based on users' deviations from average sleep, number of sleep interruptions, and hours slept the night before in those reporting ≥ 8 and < 25 migraine attacks on average per month. Conversely, we modelled whether attack occurrence and pain intensity predicted hours slept that night. RESULTS: There were 724 users (129 males, 412 females, 183 unknown, mean age = 41.88 years, SD = 11.63), with a mean monthly attack frequency of 9.94. More sleep interruptions (95% Highest Density Interval (95%HDI [0.11 - 0.21]) and deviation from a user's mean sleep (95%HDI [0.04 - 0.08]) were significant predictors of a next day attack. Total hours slept was not a significant predictor (95%HDI [-0.04 - 0.04]). Pain intensity, but not attack occurrence was a positive predictor of hours slept. CONCLUSIONS: Sleep fragmentation and deviation from typical sleep are the main drivers of the relationship between sleep and migraine. Having a migraine attack does not predict sleep duration, yet the pain associated with it does. This study highlights sleep as crucial in migraine management.


Subject(s)
Migraine Disorders , Sleep , Female , Male , Humans , Adult , Bayes Theorem , Sleep Duration , Migraine Disorders/epidemiology , Pain
3.
Cephalalgia ; 42(13): 1359-1374, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36259130

ABSTRACT

BACKGROUND: Imaging migraine premonitory studies show increased midbrain activation consistent with the ventral tegmental area, an area involved in pain modulation and hedonic feeding. We investigated ventral tegmental area pharmacological modulation effects on trigeminovascular processing and consequent glycemic levels, which could be involved in appetite changes in susceptible migraine patients. METHODS: Serotonin and pituitary adenylate cyclase-activating polypeptide receptors immunohistochemistry was performed in ventral tegmental area parabrachial pigmented nucleus of male Sprague Dawley rats. In vivo trigeminocervical complex neuronal responses to dura mater nociceptive electrical stimulation, and facial mechanical stimulation of the ophthalmic dermatome were recorded. Changes in trigeminocervical complex responses following ventral tegmental area parabrachial pigmented nucleus microinjection of glutamate, bicuculline, naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole were measured, and blood glucose levels assessed pre- and post-microinjection. RESULTS: Glutamatergic stimulation of ventral tegmental area parabrachial pigmented nucleus neurons reduced nociceptive and spontaneous trigeminocervical complex neuronal firing. Naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole inhibited trigeminovascular spontaneous activity, and trigeminocervical complex neuronal responses to dural-evoked electrical and mechanical noxious stimulation. Trigeminovascular sensory processing through modulation of the ventral tegmental area parabrachial pigmented nucleus resulted in reduced circulating glucose levels. CONCLUSION: Pharmacological modulation of ventral tegmental area parabrachial pigmented nucleus neurons elicits changes in trigeminovascular sensory processing. The interplay between ventral tegmental area parabrachial pigmented nucleus activity and the sensory processing by the trigeminovascular system may be relevant to understand associated sensory and homeostatic symptoms in susceptible migraine patients.


Subject(s)
Migraine Disorders , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Animals , Male , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rats, Sprague-Dawley , Ventral Tegmental Area , Blood Glucose , Quinpirole/pharmacology , Neurons , Perception
5.
Br J Pharmacol ; 179(3): 358-370, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34600443

ABSTRACT

BACKGROUND AND PURPOSE: Lasmiditan is a novel selective 5-HT1F receptor agonist, recently approved for acute treatment of migraine. 5-HT1F receptors are widely expressed in the CNS and trigeminovascular system. Here, we have explored the therapeutic effects of 5-HT1F receptor activation in preclinical models of migraine and cluster headache. EXPERIMENTAL APPROACH: Electrical stimulation of the dura mater or the superior salivatory nucleus in anaesthetised rats evoked trigeminovascular or trigeminal-autonomic reflex activation at the level of the trigeminocervical complex. Additionally, cranial autonomic manifestations in response to trigeminal-autonomic reflex activation were measured, via anterior choroidal blood flow alterations. These responses were then challenged with lasmiditan. We explored the tissue distribution of mRNA for 5-HT1F receptors in human post-mortem tissue and of several 5-HT1 receptor subtypes in specific tissue beds. KEY RESULTS: Lasmiditan dose-dependently reduced trigeminovascular activation in a preclinical model of migraine. Lasmiditan also reduced superior salivatory nucleus-evoked activation of the trigeminal-autonomic reflex, but had no effect on cranial autonomic activation. mRNA profiling in human tissue showed expression of the 5-HT1F receptor in several structures relevant for migraine and cluster headache. CONCLUSION AND IMPLICATIONS: Our data suggest that lasmiditan acts, at least in part, as an anti-migraine agent by reducing trigeminovascular activation. Furthermore, our results highlight a clear action for lasmiditan in a preclinical model of cluster headache. Given the proven translational efficacy of this model, our data support the potential utility of lasmiditan as a therapeutic option for the acute treatment of cluster headache attacks. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Subject(s)
Cluster Headache , Migraine Disorders , Animals , Benzamides , Cluster Headache/drug therapy , Migraine Disorders/drug therapy , Nociception , Piperidines , Pyridines , RNA, Messenger , Rats , Receptors, Serotonin , Serotonin , Receptor, Serotonin, 5-HT1F
6.
Pain ; 162(5): 1567-1577, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33181579

ABSTRACT

ABSTRACT: Cranial hypersensitivity is a prominent symptom of migraine, exhibited as migraine headache exacerbated with physical activity, and cutaneous facial allodynia and hyperalgesia. The underlying mechanism is believed to be, in part, activation and sensitization of dural-responsive trigeminocervical neurons. Validated preclinical models that exhibit this phenotype have great utility for understanding putative mechanisms and as a tool to screen therapeutics. We have previously shown that nitroglycerin triggers cranial allodynia in association with migraine-like headache, and this translates to neuronal cranial hypersensitivity in rats. Furthermore, responses in both humans and rats are aborted by triptan administration, similar to responses in spontaneous migraine. Here, our objective was to study the nitroglycerin model examining the effects on therapeutic targets with newly approved treatments, specifically gepants and ditans, for the acute treatment of migraine. Using electrophysiological methods, we determined changes to ongoing firing and somatosensory-evoked cranial sensitivity, in response to nitroglycerin, followed by treatment with a calcitonin gene-related peptide receptor antagonist, gepant (olcegepant), a 5-HT1F receptor agonist, ditan (LY344864), and an NK1 receptor antagonist (GR205171). Nitroglycerin induced activation of migraine-like central trigeminocervical neurons, and intracranial and extracranial neuronal hypersensitivity. These responses were aborted by olcegepant and LY344864. However, GR205171, which failed in clinical trial for both abortive and preventive treatment of migraine, had no effect. These data support the nitroglycerin model as a valid approach to study cranial hypersensitivity and putative mechanisms involved in migraine and as a screen to dissect potentially efficacious migraine therapeutic targets.


Subject(s)
Migraine Disorders , Nitroglycerin , Animals , Headache , Hyperalgesia , Migraine Disorders/drug therapy , Neurons , Nitroglycerin/toxicity , Rats
7.
Pain ; 162(2): 591-599, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32796319

ABSTRACT

ABSTRACT: Nonsteroidal anti-inflammatory drugs, cyclooxygenase inhibitors, are used routinely in the treatment of primary headache disorders. Indomethacin is unique in its use in the diagnosis and treatment of hemicrania continua and paroxysmal hemicrania. The mechanism of this specific action is not fully understood, although an interaction with nitric oxide (NO) signaling pathways has been suggested. Trigeminovascular neurons were activated by dural electrical stimulation, systemic administration of an NO donor, or local microiontophoresis of L-glutamate. Using electrophysiological techniques, we subsequently recorded the activation of trigeminovascular neurons and their responses to intravenous indomethacin, naproxen, and ibuprofen. Administration of indomethacin (5 mg·kg-1), ibuprofen (30 mg·kg-1), or naproxen (30 mg·kg-1) inhibited dural-evoked firing within the trigeminocervical complex with different temporal profiles. Similarly, both indomethacin and naproxen inhibited L-glutamate-evoked cell firing suggesting a common action. By contrast, only indomethacin was able to inhibit NO-induced firing. The differences in profile of effect of indomethacin may be fundamental to its ability to treat paroxysmal hemicrania and hemicrania continua. The data implicate NO-related signaling as a potential therapeutic approach to these disorders.


Subject(s)
Headache , Indomethacin , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Headache/drug therapy , Humans , Ibuprofen/therapeutic use , Indomethacin/pharmacology , Naproxen/therapeutic use
8.
Brain ; 143(9): 2681-2688, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32810212

ABSTRACT

Medication overuse headache is estimated to affect 2% of the population, and is ranked in the top 20 most disabling disorders due to its high level of disability. Several therapies used in the treatment of acute migraine are thought to be associated with medication overuse headache, including opioids and triptans. With limited treatment options, it is critical to determine the risk profile of novel therapies prior to their widespread use. The current study explores the potential medication overuse risk of two novel therapeutic drug classes, namely the ditans: 5-HT1F receptor agonists, and the gepants: calcitonin gene-related peptide receptor antagonists, in a preclinical model of medication overuse. Persistent exposure of mice to the 5-HT1F agonist LY344864, but not olcegepant produced a significant reduction in hind paw and orofacial mechanical withdrawal thresholds as a surrogate readout of allodynia. In agreement, only LY344864 induced neuroplastic changes in trigeminal sensory afferents, increasing calcitonin gene-related peptide expression and basal trigeminal nociception. Our data highlight a differential medication overuse headache risk profile for the ditan and gepant classes of drugs that has important implications for their clinical use and patient education to help reduce the burden of medication overuse headache.


Subject(s)
Headache Disorders, Secondary/metabolism , Migraine Disorders/metabolism , Pain Measurement/drug effects , Receptors, Calcitonin Gene-Related Peptide/metabolism , Receptors, Serotonin/metabolism , Animals , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Carbazoles/pharmacology , Carbazoles/therapeutic use , Fluorobenzenes/pharmacology , Fluorobenzenes/therapeutic use , Headache Disorders, Secondary/drug therapy , Male , Mice , Mice, Inbred C57BL , Migraine Disorders/drug therapy , Pain Measurement/methods , Piperazines/pharmacology , Piperazines/therapeutic use , Quinazolines/pharmacology , Quinazolines/therapeutic use , Risk Factors , Receptor, Serotonin, 5-HT1F
11.
Br J Pharmacol ; 177(11): 2478-2486, 2020 06.
Article in English | MEDLINE | ID: mdl-31975427

ABSTRACT

BACKGROUND AND PURPOSE: There is a major unmet need to develop new therapies for migraine. We have previously demonstrated the therapeutic potential of the acid-sensing ion channel (ASIC) blockade in migraine, via an ASIC1 mechanism. ASIC3 is expressed in the trigeminal ganglion and its response is potentiated by NO that can trigger migraine attacks in patients. Thus we sought to explore the potential therapeutic effect of ASIC3 blockade in migraine. EXPERIMENTAL APPROACH: To investigate this, we utilised validated electrophysiological and behavioural rodent preclinical models. In rats, ASIC3 blockade using APETx2 (50 or 100 µg·kg-1 , i.v.) was measured by using durovascular and NO-evoked trigeminal nociceptive responses along with cortical spreading depression models. In mice, we sought to determine if periorbital mechanical sensitivity, induced by acute nitroglycerin (10 mg·kg-1 , i.p.), was attenuated by APETx2 (230 µg·kg-1 , i.p.), as well as latent sensitisation induced by bright light stress in a chronic nitroglycerin model. KEY RESULTS: Here, we show that the ASIC3 blocker APETx2 inhibits durovascular-evoked and NO-induced sensitisation of trigeminal nociceptive responses in rats. In agreement, acute and chronic periorbital mechanosensitivity induced in mice by nitroglycerin and subsequent bright light stress-evoked latent sensitivity as a model of chronic migraine are all reversed by APETx2. CONCLUSION AND IMPLICATIONS: These results support the development of specific ASIC3 or combined ASIC1/3 blockers for migraine-related pain and point to a potential role for ASIC-dependent NO-mediated attack triggering. This has key implications for migraine, given the major unmet need for novel therapeutic targets.


Subject(s)
Acid Sensing Ion Channels , Nitric Oxide , Animals , Humans , Mice , Pain , Rats , Rats, Sprague-Dawley , Trigeminal Ganglion
13.
Neurol Clin ; 37(4): 651-671, 2019 11.
Article in English | MEDLINE | ID: mdl-31563225

ABSTRACT

Migraine is the most common disabling primary headache globally. Attacks typically present with unilateral throbbing headache and associated symptoms including, nausea, multisensory hypersensitivity, and marked fatigue. In this article, the authors address the underlying neuroanatomical basis for migraine-related headache, associated symptomatology, and discuss key clinical and preclinical findings that indicate that migraine likely results from dysfunctional homeostatic mechanisms. Whereby, abnormal central nervous system responses to extrinsic and intrinsic cues may lead to increased attack susceptibility.


Subject(s)
Brain/physiopathology , Migraine Disorders/diagnosis , Migraine Disorders/physiopathology , Nerve Net/physiopathology , Brain/metabolism , Cortical Spreading Depression/physiology , Humans , Nerve Net/metabolism
14.
J Headache Pain ; 20(1): 91, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31464579

ABSTRACT

BACKGROUND: Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. MAIN BODY: Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. CONCLUSION: Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.


Subject(s)
Migraine Disorders , Models, Animal , Animals , Humans
15.
Brain ; 142(1): 103-119, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30596910

ABSTRACT

Cranial allodynia associated with spontaneous migraine is reported as either responsive to triptan treatment or to be predictive of lack of triptan efficacy. These conflicting results suggest that a single mechanism mediating the underlying neurophysiology of migraine symptoms is unlikely. The lack of a translational approach to study cranial allodynia reported in migraine patients is a limitation in dissecting potential mechanisms. Our objective was to study triptan-responsive cranial allodynia in migraine patients, and to develop an approach to studying its neural basis in the laboratory. Using nitroglycerine to trigger migraine attacks, we investigated whether cranial allodynia could be triggered experimentally, observing its response to treatment. Preclinically, we examined the cephalic response properties of central trigeminocervical neurons using extracellular recording techniques, determining changes to ongoing firing and somatosensory cranial-evoked sensitivity, in response to nitroglycerine followed by triptan treatment. Cranial allodynia was triggered alongside migraine-like headache in nearly half of subjects. Those who reported cranial allodynia accompanying their spontaneous migraine attacks were significantly more likely to have symptoms triggered than those that did not. Patients responded to treatment with aspirin or sumatriptan. Preclinically, nitroglycerine caused an increase in ongoing firing and hypersensitivity to intracranial-dural and extracranial-cutaneous (noxious and innocuous) somatosensory stimulation, reflecting signatures of central sensitization potentially mediating throbbing headache and cranial allodynia. These responses were aborted by a triptan. These data suggest that nitroglycerine can be used as an effective and reliable method to trigger cranial allodynia in subjects during evoked migraine, and the symptom is responsive to abortive triptan treatments. Preclinically, nitroglycerine activates the underlying neural mechanism of cephalic migraine symptoms, central sensitization, also predicting the clinical outcome to triptans. This supports a biological rationale that several mechanisms can mediate the underlying neurophysiology of migraine symptoms, with nitrergic-induced changes reflecting one that is relevant to spontaneous migraine in many migraineurs, whose symptoms of cranial allodynia are responsive to triptan treatment. This approach translates directly to responses in animals and is therefore a relevant platform to study migraine pathophysiology, and for use in migraine drug discovery.


Subject(s)
Hyperalgesia/physiopathology , Migraine Disorders/physiopathology , Trigeminal Nerve/physiology , Adolescent , Adult , Aspirin/therapeutic use , Double-Blind Method , Humans , Hyperalgesia/chemically induced , Hyperalgesia/complications , Hyperalgesia/drug therapy , Middle Aged , Migraine Disorders/chemically induced , Migraine Disorders/complications , Migraine Disorders/drug therapy , Nitroglycerin , Spinal Nerves/physiology , Sumatriptan/therapeutic use , Young Adult
16.
Pain ; 160(2): 385-394, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30371556

ABSTRACT

Migraine is a common disabling neurological condition that is associated with several premonitory symptoms that can occur days before the headache onset. The most commonly reported premonitory symptom is marked fatigue that has been shown to be highly predictive of an ensuing migraine attack. The locus coeruleus (LC) is a key nucleus involved in arousal that has also been shown to impact pain processing. It provides one of the major sources of noradrenaline to the dorsal horn of the spinal cord and neocortex. Given the clinical association between migraine, sleep-wake regulation, and fatigue, we sought to determine whether LC modulation could impact migraine-related phenotypes in several validated preclinical models of migraine. To determine its role in migraine-related pain, we recorded dural nociceptive-evoked responses of neurons in the trigeminocervical complex, which receives trigeminal primary afferents from the durovascular complex. In addition, we explored the susceptibility to cortical spreading depression initiation, the presumed underlying phenomenon of migraine aura. Our experiments reveal a potent role for LC disruption in the differential modulation of migraine-related phenotypes, inhibiting dural-evoked activation of wide dynamic neurons in the trigeminocervical complex while increasing cortical spreading depression susceptibility. This highlights the potential divergent impact of LC disruption in migraine physiology, which may help explain the complex interactions between dysfunctional arousal mechanisms and migraine.


Subject(s)
Locus Coeruleus/physiopathology , Migraine Disorders/pathology , Migraine Disorders/physiopathology , Animals , Benzylamines/pharmacology , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Disease Models, Animal , Dopamine beta-Hydroxylase/metabolism , Electric Stimulation , Male , Neocortex/physiopathology , Neurotransmitter Uptake Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , Spinal Cord/physiopathology , Trigeminal Caudal Nucleus/drug effects , Trigeminal Caudal Nucleus/pathology
19.
Neurotherapeutics ; 15(2): 304-312, 2018 04.
Article in English | MEDLINE | ID: mdl-29556965

ABSTRACT

Migraine is a highly prevalent, severe, and disabling neurological condition with a significant unmet need for effective acute therapies. Patients (~50%) are dissatisfied with their currently available therapies. Calcitonin gene-related peptide (CGRP) has emerged as a key neuropeptide involved in the pathophysiology of migraines. As reviewed in this manuscript, a number of small molecule antagonists of the CGRP receptor have been developed for migraine therapy. Incredibly, the majority of the clinical trials conducted have proven positive, demonstrating the importance of this signalling pathway in migraine. Unfortunately, a number of these molecules raised liver toxicity concerns when used daily for as little as 7 days resulting in their discontinuation. Despite the clear safety concerns, clinical trial data suggests that their intermittent use remains a viable and safe alternative, with 2 molecules remaining in clinical development (ubrogepant and rimegepant). Further, these proofs of principle studies identifying CGRP as a viable clinical target have led to the development of several CGRP or CGRP receptor-targeted monoclonal antibodies that continue to show good clinical efficacy.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Migraine Disorders/drug therapy , Acute Disease , Animals , Clinical Trials as Topic , Humans , Treatment Outcome
20.
J Headache Pain ; 19(1): 20, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29508090

ABSTRACT

The interaction between sleep and primary headaches has gained considerable interest due to their strong, bidirectional, clinical relationship. Several primary headaches demonstrate either a circadian/circannual rhythmicity in attack onset or are directly associated with sleep itself. Migraine and cluster headache both show distinct attack patterns and while the underlying mechanisms of this circadian variation in attack onset remain to be fully explored, recent evidence points to clear physiological, anatomical and genetic points of convergence. The hypothalamus has emerged as a key brain area in several headache disorders including migraine and cluster headache. It is involved in homeostatic regulation, including pain processing and sleep regulation, enabling appropriate physiological responses to diverse stimuli. It is also a key integrator of circadian entrainment to light, in part regulated by pituitary adenylate cyclase-activating peptide (PACAP). With its established role in experimental headache research the peptide has been extensively studied in relation to headache in both humans and animals, however, there are only few studies investigating its effect on sleep in humans. Given its prominent role in circadian entrainment, established in preclinical research, and the ability of exogenous PACAP to trigger attacks experimentally, further research is very much warranted. The current review will focus on the role of the hypothalamus in the regulation of sleep-wake and circadian rhythms and provide suggestions for the future direction of such research, with a particular focus on PACAP.


Subject(s)
Circadian Rhythm/physiology , Headache/metabolism , Hypothalamus/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Sleep/physiology , Animals , Brain/metabolism , Headache/therapy , Humans , Pain/metabolism , Pain Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...