Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 11): i76-i77, 2009 Oct 17.
Article in English | MEDLINE | ID: mdl-21578035

ABSTRACT

Single crystals of Ba(0.96)Eu(0.04)BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl(2) structure [Braekken (1932 ▶). Z. Kristallogr.83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = ±0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

2.
J Am Chem Soc ; 130(18): 5883-5, 2008 May 07.
Article in English | MEDLINE | ID: mdl-18407639

ABSTRACT

The total structure determination of thiol-protected Au clusters has long been a major issue in cluster research. Herein, we report an unusual single crystal structure of a 25-gold-atom cluster (1.27 nm diameter, surface-to-surface distance) protected by eighteen phenylethanethiol ligands. The Au25 cluster features a centered icosahedral Au13 core capped by twelve gold atoms that are situated in six pairs around the three mutually perpendicular 2-fold axes of the icosahedron. The thiolate ligands bind to the Au25 core in an exclusive bridging mode. This highly symmetric structure is distinctly different from recent predictions of density functional theory, and it also violates the empirical golden rule "cluster of clusters", which would predict a biicosahedral structure via vertex sharing of two icosahedral M13 building blocks as previously established in various 25-atom metal clusters protected by phosphine ligands. These results point to the importance of the ligand-gold core interactions. The Au25(SR)18 clusters exhibit multiple molecular-like absorption bands, and we find the results are in good correspondence with time-dependent density functional theory calculations for the observed structure.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Benzene Derivatives/chemistry , Crystallography, X-Ray , Ethane/analogs & derivatives
3.
Inorg Chem ; 42(4): 1140-50, 2003 Feb 24.
Article in English | MEDLINE | ID: mdl-12588150

ABSTRACT

Silanolysis of B(O(t)Bu)(3) with 2 and 3 equiv of HOSi(O(t)Bu)(3) led to the formation of (t)BuOB[OSi(O(t)Bu)(3)](2) (1) and B[OSi(O(t)Bu)(3)](3) (2), respectively. Compounds 1 and 2 are efficient single-source molecular precursors to B/Si/O materials via thermolytic routes in nonpolar media, as demonstrated by the generation of BO(1.5).2SiO(2) (BOSi2(xg)) and BO(1.5).3SiO(2) (BOSi3(xg)) xerogels, respectively. Use of a block copolymer template provided B/Si/O materials (BOSi2(epe) and BOSi3(epe)) with a broad distribution of mesopores (by N(2) porosimetry) and smaller, more uniform particle sizes (by TEM) as compared to the nontemplated materials. Hydrolyses of 1 and 2 with excess H(2)O resulted in formation of the expected amounts of (t)BuOH and HOSi(O(t)Bu)(3); however, reaction of 1 with 1 equiv of H(2)O led to isolation of the new boronous acid HOB[OSi(O(t)Bu)(3)](2) (3). This ligand precursor is well suited for the synthesis of new metal (siloxy)boryloxide complexes via proton-transfer reactions involving the BOH group. The reaction of 3 with Cp(2)ZrMe(2) resulted in formation of Cp(2)Zr(Me)OB[OSi(O(t)Bu)(3)](2) (4) in high yield. This rare example of a transition metal boryloxide complex crystallizes in the triclinic space group Ponemacr; and exhibits a crystal structure with an unprecedented number of independent molecules in its asymmetric unit (i.e., Z' = 18 and Z = 36). This unusual crystal structure presented an opportunity to perform statistical analyses of the metric parameters for the 18 crystallographically independent molecules. Complex 4 readily converts to Cp(2)Zr[OSi(O(t)Bu)(3)](2) (5) upon thermolysis or upon dissolution in Et(2)O at room temperature.

4.
J Am Chem Soc ; 124(18): 5100-8, 2002 May 08.
Article in English | MEDLINE | ID: mdl-11982375

ABSTRACT

Hydrogenolysis of [Cp(PMe(3))Rh(Me)(CH(2)Cl(2))](+)BAr'(4)(-) (4, Ar' = 3,5-C(6)H(3)(CF(3))(2)) in dichloromethane afforded the nonclassical polyhydride complex [Cp*PMe(3))Rh(H)(H(2))](+)BAr'(4)(-) (1), which exhibits a single hydride resonance at all accessible temperatures in the (1)H NMR spectrum. Exposure of solutions of 1 to D(2) or T(2) gas resulted in partial isotopic substitution in the hydride sites. Formulation of 1 as a hydride/dihydrogen complex was based upon T(1) (T(1)(min) = 23 ms at 150 K, 500 MHz), J(H-D) (ca. 10 Hz), and J(H-T) (ca. 70 Hz) measurements. The barrier (Delta G(++)) to exchange of hydride with dihydrogen sites was determined to be less than ca. 5 kcal/mol. Protonation of Cp(PMe(3))Rh(H)(2) (2) using H(OEt(2))(2)BAr'(4) resulted in binuclear species [(Cp(PMe(3))Rh(H))(2)(mu-H)](+)BAr'(4)(-) (3), which is formed in a reaction involving 1 as an intermediate. Complex 3 contains two terminal hydrides and one bridging hydride ligand which exchange with a barrier of 9.1 kcal/mol as observed by (1)H NMR spectroscopy. Additionally, the structures of 3 and 4, determined by X-ray diffraction, are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...