Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Am J Physiol Cell Physiol ; 327(2): C221-C236, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38826135

ABSTRACT

Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees (CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knockout mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the mitochondrion.NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulating genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion. Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in targeting RNA therapeutics to the mitochondrion.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Humans , Mice , Polyribonucleotide Nucleotidyltransferase/genetics , Polyribonucleotide Nucleotidyltransferase/metabolism , Mitochondria/genetics , Mitochondria/enzymology , Mitochondria/metabolism , Protein Binding
2.
Cogn Sci ; 48(4): e13442, 2024 04.
Article in English | MEDLINE | ID: mdl-38655894

ABSTRACT

Recent investigations on how people derive meaning from language have focused on task-dependent shifts between two cognitive systems. The symbolic (amodal) system represents meaning as the statistical relationships between words. The embodied (modal) system represents meaning through neurocognitive simulation of perceptual or sensorimotor systems associated with a word's referent. A primary finding of literature in this field is that the embodied system is only dominant when a task necessitates it, but in certain paradigms, this has only been demonstrated using nouns and adjectives. The purpose of this paper is to study whether similar effects hold with verbs. Experiment 1 evaluated a novel task in which participants rated a selection of verbs on their implied vertical movement. Ratings correlated well with distributional semantic models, establishing convergent validity, though some variance was unexplained by language statistics alone. Experiment 2 replicated previous noun-based location-cue congruency experimental paradigms with verbs and showed that the ratings obtained in Experiment 1 predicted reaction times more strongly than language statistics. Experiment 3 modified the location-cue paradigm by adding movement to create an animated, temporally decoupled, movement-verb judgment task designed to examine the relative influence of symbolic and embodied processing for verbs. Results were generally consistent with linguistic shortcut hypotheses of symbolic-embodied integrated language processing; location-cue congruence elicited processing facilitation in some conditions, and perceptual information accounted for reaction times and accuracy better than language statistics alone. These studies demonstrate novel ways in which embodied and linguistic information can be examined while using verbs as stimuli.


Subject(s)
Language , Reaction Time , Semantics , Humans , Female , Male , Young Adult , Cues , Adult
3.
J Orthop Res ; 42(3): 539-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37794704

ABSTRACT

Prosthetic joint infections (PJI) are associated with orthopaedic morbidity and mortality. Mitochondria, the "cell's powerhouses," are thought to play crucial roles in infection response and in increased risk of sepsis mortality. No current research discusses PJI's effect on mitochondrial function and a lack of understanding of immune-infection interactions potentially hinders patient care. The purpose of this pilot study was to evaluate the impact of simulated PJI on local tissue mitochondrial function. Using an established prosthetic implant-associated in vivo model, tissues were harvested from the surgical limb of a methicillin-sensitive Staphylococcus aureus implant-associated infection group (n = 6) and compared to a noninfected group (n = 6) at postoperative day (POD) 21. Using mitochondrial coupling assays, oxygen consumption rate and extracellular acidification rate were assessed in each group. Electron flow through mitochondrial complexes reflected group activity. Electron Paramagnetic Resonance (EPR) spectrometry measured the oxidizing potential of serum samples from infected versus noninfected groups. On POD21, colony-forming units per gram of tissue showed 5 × 109 in the infected group and 101 in the noninfected group (p < 0.0001). Maximal respiration and oxygen consumption due to adenosine triphosphate synthesis were significantly lower in isolated mitochondria from infected limbs (p = 0.04). Both groups had similar complex I, III, IV, and V activity (p > 0.1). Infected group EPR signal intensity reflecting reactive oxygen species levels was 1.31 ± 0.30 compared to 1.16 ± 0.28 (p = 0.73) in the noninfected group. This study highlights PJI's role in mammalian cell mitochondrial dysfunction and oxidative tissue damage, which can help develop interventions to combat PJI.


Subject(s)
Arthritis, Infectious , Prosthesis-Related Infections , Staphylococcal Infections , Animals , Arthritis, Infectious/etiology , Mammals , Orthopedics , Pilot Projects , Prostheses and Implants/adverse effects , Prosthesis-Related Infections/etiology , Retrospective Studies , Staphylococcal Infections/etiology , Staphylococcus aureus
4.
Exp Neurol ; 368: 114483, 2023 10.
Article in English | MEDLINE | ID: mdl-37479019

ABSTRACT

Physical exercise represents a potentially inexpensive, accessible, and optimizable rehabilitation approach to traumatic brain injury (TBI) recovery. However, little is known about the impact of post-injury exercise on the neurometabolic, transcriptional, and cognitive outcomes following a TBI. In the current study, we examined TBI outcomes in adolescent male and female mice following a controlled cortical impact (CCI) injury. Mice underwent a 10-day regimen of sedentary, low-, moderate-, or high-intensity treadmill exercise and were assessed for cognitive function, histopathology, mitochondrial function, and oxidative stress. Among male mice, low-moderate exercise improved cognitive recovery, and reduced cortical lesion volume and oxidative stress, whereas high-intensity exercise impaired both cognitive recovery and mitochondrial function. On the other hand, among female mice, exercise had an intermediate effect on cognitive recovery but significantly improved brain mitochondrial function. Moreover, single nuclei RNA sequencing of perilesional brain tissue revealed neuronal plasticity-related differential gene expression that was largely limited to the low-intensity exercise injured males. Taken together, these data build on previous reports of the neuroprotective capacity of exercise in a TBI model, and reveal that this rehabilitation strategy impacts neurometabolic, functional, and transcriptional outcome measures in an intensity- and sex-dependent manner.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Mice , Male , Female , Animals , Brain Injuries, Traumatic/pathology , Brain/metabolism , Brain Injuries/metabolism , Oxidative Stress , Neuroprotection
5.
Res Sq ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37502859

ABSTRACT

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

6.
PLoS One ; 18(5): e0285512, 2023.
Article in English | MEDLINE | ID: mdl-37155623

ABSTRACT

Speckle tracking echocardiography (STE) has been utilized to evaluate independent spatial alterations in the diabetic heart, but the progressive manifestation of regional and segmental cardiac dysfunction in the type 2 diabetic (T2DM) heart remains understudied. Therefore, the objective of this study was to elucidate if machine learning could be utilized to reliably describe patterns of the progressive regional and segmental dysfunction that are associated with the development of cardiac contractile dysfunction in the T2DM heart. Non-invasive conventional echocardiography and STE datasets were utilized to segregate mice into two pre-determined groups, wild-type and Db/Db, at 5, 12, 20, and 25 weeks. A support vector machine model, which classifies data using a single line, or hyperplane, that best separates each class, and a ReliefF algorithm, which ranks features by how well each feature lends to the classification of data, were used to identify and rank cardiac regions, segments, and features by their ability to identify cardiac dysfunction. STE features more accurately segregated animals as diabetic or non-diabetic when compared with conventional echocardiography, and the ReliefF algorithm efficiently ranked STE features by their ability to identify cardiac dysfunction. The Septal region, and the AntSeptum segment, best identified cardiac dysfunction at 5, 20, and 25 weeks, with the AntSeptum also containing the greatest number of features which differed between diabetic and non-diabetic mice. Cardiac dysfunction manifests in a spatial and temporal fashion, and is defined by patterns of regional and segmental dysfunction in the T2DM heart which are identifiable using machine learning methodologies. Further, machine learning identified the Septal region and AntSeptum segment as locales of interest for therapeutic interventions aimed at ameliorating cardiac dysfunction in T2DM, suggesting that machine learning may provide a more thorough approach to managing contractile data with the intention of identifying experimental and therapeutic targets.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Diseases , Ventricular Dysfunction, Left , Mice , Animals , Diabetes Mellitus, Type 2/complications , Disease Models, Animal , Echocardiography/methods , Heart Diseases/complications
7.
Cancers (Basel) ; 15(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36765664

ABSTRACT

B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

8.
Death Stud ; 47(10): 1075-1081, 2023.
Article in English | MEDLINE | ID: mdl-36576111

ABSTRACT

Death anxiety is commonly assessed using self-report surveys, but practitioners and researchers have recently established the need for implicit measures. However, many implicit measures lack sufficient evidence to support their construct validity. We examined two innovative implicit death anxiety measures (linguistic analysis and a Stroop paradigm) alongside a traditional self-report death anxiety survey battery. The linguistic analysis of death-related writing was supported by concurrent validity among death anxiety measures. We conclude that linguistic analyses of death-related writing may be a valid, viable, implicit measure of death anxiety which may be useful to both researchers and clinicians.


Subject(s)
Linguistics , Psycholinguistics , Humans , Self Report , Surveys and Questionnaires , Anxiety , Reproducibility of Results , Psychometrics
9.
J Biol Chem ; 299(1): 102745, 2023 01.
Article in English | MEDLINE | ID: mdl-36436558

ABSTRACT

Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the ß-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.


Subject(s)
Bile Acids and Salts , Diet, Western , Animals , Male , Mice , Acyl Coenzyme A/metabolism , Bile Acids and Salts/metabolism , Chenodeoxycholic Acid , Fatty Acids/metabolism , Liver/metabolism , Oxidation-Reduction , Nudix Hydrolases
10.
Nanotoxicology ; 17(10): 651-668, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38180356

ABSTRACT

N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO2) contributes to cardiac m6A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO2 with a target aerosol mass concentration of 12 mg/m3. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m6A antibodies was performed followed by sequencing of immunoprecipitant (m6A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO2 exposed mice (Padj ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m6A methylation sites (Padj ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (P ≤ 0.05). The lack of m6A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO2 inhalation exposure.


Subject(s)
Adenosine/analogs & derivatives , Genes, Mitochondrial , Inhalation Exposure , Pregnancy , Mice , Female , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Inbred Strains , RNA , RNA, Messenger
11.
J Am Coll Cardiol ; 80(23): 2187-2201, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36456049

ABSTRACT

BACKGROUND: Changes in cardiac size, myocardial mass, cardiomyocyte appearance, and, ultimately, the function of the entire organ are interrelated features of cardiac remodeling that profoundly affect patient outcomes. OBJECTIVES: This study proposes that the application of radiomics for extracting cardiac ultrasonic textural features (ultrasomics) can aid rapid, automated assessment of left ventricular (LV) structure and function without requiring manual measurements. METHODS: This study developed machine-learning models using cardiac ultrasound images from 1,915 subjects in 3 clinical cohorts: 1) an expert-annotated cardiac point-of-care-ultrasound (POCUS) registry (n = 943, 80% training/testing and 20% internal validation); 2) a prospective POCUS cohort for external validation (n = 275); and 3) a prospective external validation on high-end ultrasound systems (n = 484). In a type 2 diabetes murine model, echocardiography of wild-type (n = 10) and Leptr-/- (n = 8) mice were assessed longitudinally at 3 and 25 weeks, and ultrasomics features were correlated with histopathological features of hypertrophy. RESULTS: The ultrasomics model predicted LV remodeling in the POCUS and high-end ultrasound external validation studies (area under the curve: 0.78 [95% CI: 0.68-0.88] and 0.79 [95% CI: 0.73-0.86], respectively). Similarly, the ultrasomics model predicted LV remodeling was significantly associated with major adverse cardiovascular events in both cohorts (P < 0.0001 and P = 0.0008, respectively). Moreover, on multivariate analysis, the ultrasomics probability score was an independent echocardiographic predictor of major adverse cardiovascular events in the high-end ultrasound cohort (HR: 8.53; 95% CI: 4.75-32.1; P = 0.0003). In the murine model, cardiomyocyte hypertrophy positively correlated with 2 ultrasomics biomarkers (R2 = 0.57 and 0.52, Q < 0.05). CONCLUSIONS: Cardiac ultrasomics-based biomarkers may aid development of machine-learning models that provide an expert-level assessment of LV structure and function.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Mice , Animals , Ventricular Remodeling , Disease Models, Animal , Prospective Studies , Ultrasonics , Myocytes, Cardiac , Hypertrophy
13.
Ultrasound Med Biol ; 48(10): 2128-2138, 2022 10.
Article in English | MEDLINE | ID: mdl-35933241

ABSTRACT

We used segmental strain analysis to evaluate whether intrinsic (diet-induced obesity [DIO]) and extrinsic (unpredictable chronic mild stress [UCMS]) stressors can alter deformational patterns of the left ventricle. Six-week-old male C57BL/6J mice were randomized into the lean or obese group (n = 24/group). Mice underwent 12 wk of DIO with a high-fat diet (HFD). At 18 wk, lean and obese mice were further randomized into UCMS and non-UCMS groups (UCMS, 7 h/d, 5 d/wk, for 8 wk). Echocardiography was performed at baseline (6 wk), post-HFD (18 wk) and post-UCMS (26 wk). Machine learning was applied to the DIO and UCMS groups. There was robust predictive accuracy (area under the receiver operating characteristic curve [AUC] = 0.921) when comparing obese with lean mice, with radial strain changes in the lateral (-64%, p ≤ 0.001) and anterior free (-53%, p < 0.001) walls being most informative. The ability to predict mice that underwent UCMS, irrespective of diet, was assessed (AUC = 0.886), revealing longitudinal strain rate of the anterior midwall and radial strain of the posterior septal wall as the top features. The wall segments indicate a predilection for changes in deformation patterns to the free wall (DIO) and septal wall (UCMS), indicating disease-specific alterations to the myocardium.


Subject(s)
Heart Ventricles , Myocardium , Animals , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Obesity
14.
Conscious Cogn ; 100: 103303, 2022 04.
Article in English | MEDLINE | ID: mdl-35228126

ABSTRACT

Mind wandering is a universal phenomenon in which a person's attention decouples from stimuli within their current environment. Researchers have sought objective, less disruptive indicators of cognitive disengagement, resulting in a focus eye tracking and blink characteristics. Such research has found positive associations between mind wandering and blink characteristics, typically in reading tasks. However, extracting blinks accurately from continuous eye-tracking data is complex, and the literature contains inconsistently reported data processing methods, some of which may have an elevated risk of identifying noise as signal. Further, the relationship between attentional disengagement and blink durations has not been fully explored in multiple task modalities. We conducted three modality-specific experiments while recording eye movements. Blink durations varied as a function of stimulus/task engagingness; less engaging tasks yielded longer blink durations, suggesting a link between blinking and mind wandering. Recommendations are provided for researchers seeking to accurately derive blink events from continuous, binocular, eye-tracking data.


Subject(s)
Blinking , Eye-Tracking Technology , Attention , Eye Movements , Humans , Reading
15.
Am J Physiol Cell Physiol ; 322(3): C482-C495, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35108116

ABSTRACT

Diabetes mellitus has been linked to an increase in mitochondrial microRNA-378a (miR-378a) content. Enhanced miR-378a content has been associated with a reduction in mitochondrial genome-encoded mt-ATP6 abundance, supporting the hypothesis that miR-378a inhibition may be a therapeutic option for maintaining ATP synthase functionality during diabetes mellitus. Evidence also suggests that long noncoding RNAs (lncRNAs), including lncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (Kcnq1ot1), participate in regulatory axes with microRNAs (miRs). Prediction analyses indicate that Kcnq1ot1 has the potential to bind miR-378a. This study aimed to determine if loss of miR-378a in a genetic mouse model could ameliorate cardiac dysfunction in type 2 diabetes mellitus (T2DM) and to ascertain whether Kcnq1ot1 interacts with miR-378a to impact ATP synthase functionality by preserving mt-ATP6 levels. MiR-378a was significantly higher in patients with T2DM and 25-wk-old Db/Db mouse mitochondria, whereas mt-ATP6 and Kcnq1ot1 levels were significantly reduced when compared with controls. Twenty-five-week-old miR-378a knockout Db/Db mice displayed preserved mt-ATP6 and ATP synthase protein content, ATP synthase activity, and preserved cardiac function, implicating miR-378a as a potential therapeutic target in T2DM. Assessments following overexpression of the 500-bp Kcnq1ot1 fragment in established mouse cardiomyocyte cell line (HL-1) cardiomyocytes overexpressing miR-378a revealed that Kcnq1ot1 may bind and significantly reduce miR-378a levels, and rescue mt-ATP6 and ATP synthase protein content. Together, these data suggest that Kcnq1ot1 and miR-378a may act as constituents in an axis that regulates mt-ATP6 content, and that manipulation of this axis may provide benefit to ATP synthase functionality in type 2 diabetic heart.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , RNA, Long Noncoding , Adenosine Triphosphate , Animals , Diabetes Mellitus, Type 2/genetics , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics
16.
Part Fibre Toxicol ; 18(1): 44, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911549

ABSTRACT

BACKGROUND: Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS: Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS: CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/toxicity , Animals , Inhalation Exposure/adverse effects , Lung , Mice , Mice, Inbred C57BL , Mitochondria , Ozone/toxicity , Soot/toxicity , Transcriptome
17.
Free Radic Biol Med ; 175: 226-235, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34496224

ABSTRACT

B-cell acute lymphoblastic leukemia (ALL) affects both pediatric and adult patients. Chemotherapy resistant tumor cells that contribute to minimal residual disease (MRD) underlie relapse and poor clinical outcomes in a sub-set of patients. Targeting mitochondrial oxidative phosphorylation (OXPHOS) in the treatment of refractory leukemic cells is a potential novel approach to sensitizing tumor cells to existing standard of care therapeutic agents. In the current study, we have expanded our previous investigation of the mitoNEET ligand NL-1 in the treatment of ALL to interrogate the functional role of the mitochondrial outer membrane protein mitoNEET in B-cell ALL. Knockout (KO) of mitoNEET (gene: CISD1) in REH leukemic cells led to changes in mitochondrial ultra-structure and function. REH cells have significantly reduced OXPHOS capacity in the KO cells coincident with reduction in electron flow and increased reactive oxygen species. In addition, we found a decrease in lipid content in KO cells, as compared to the vector control cells was observed. Lastly, the KO of mitoNEET was associated with decreased proliferation as compared to control cells when exposed to the standard of care agent cytarabine (Ara-C). Taken together, these observations suggest that mitoNEET is essential for optimal function of mitochondria in B-cell ALL and may represent a novel anti-leukemic drug target for treatment of minimal residual disease.


Subject(s)
Mitochondrial Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma , B-Lymphocytes/metabolism , Child , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
18.
Biochim Biophys Acta Biomembr ; 1863(10): 183663, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34089719

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.


Subject(s)
Huntingtin Protein/metabolism , Mitochondrial Membranes/metabolism , Mutation , Escherichia coli/metabolism , Glutathione/metabolism , Humans , Huntingtin Protein/genetics , Huntington Disease/metabolism
19.
Nanotoxicology ; 15(6): 812-831, 2021 08.
Article in English | MEDLINE | ID: mdl-33969789

ABSTRACT

Maternal engineered nanomaterial (ENM) exposure during gestation has been associated with negative long-term effects on cardiovascular health in progeny. Here, we evaluate an epitranscriptomic mechanism that contributes to these chronic ramifications and whether overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) can preserve cardiovascular function and bioenergetics in offspring following gestational nano-titanium dioxide (TiO2) inhalation exposure. Wild-type (WT) and mPHGPx (Tg) dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.01 ± 0.50 mg/m3 starting from gestational day (GD) 5 for 360 mins/day for 6 nonconsecutive days over 8 days. Echocardiography was performed in pregnant dams, adult (11-week old) and fetal (GD 14) progeny. Mitochondrial function and global N6-methyladenosine (m6A) content were assessed in adult progeny. MPHGPx enzymatic function was further evaluated in adult progeny and m6A-RNA immunoprecipitation (RIP) was combined with RT-qPCR to evaluate m6A content in the 3'-UTR. Following gestational ENM exposure, global longitudinal strain (GLS) was 32% lower in WT adult offspring of WT dams, with preservation in WT offspring of Tg dams. MPHGPx activity was significantly reduced in WT offspring (29%) of WT ENM-exposed dams, but preserved in the progeny of Tg dams. M6A-RIP-qPCR for the SEC insertion sequence region of mPHGPx revealed hypermethylation in WT offspring from ENM-exposed WT dams, which was thwarted in the presence of the maternal transgene. Our findings implicate that m6A hypermethylation of mPHGPx may be culpable for diminished antioxidant capacity and resultant mitochondrial and cardiac deficits that persist into adulthood following gestational ENM inhalation exposure.


Subject(s)
Nanostructures , Prenatal Exposure Delayed Effects , Adult , Antioxidants , Female , Fetus , Heart , Humans , Maternal Exposure , Pregnancy
20.
Pharm Res ; 38(5): 803-817, 2021 May.
Article in English | MEDLINE | ID: mdl-33982226

ABSTRACT

PURPOSE: Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD: In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS: NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 µM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION: As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.


Subject(s)
Cell Adhesion Molecules, Neuronal/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Attack, Transient/drug therapy , Mitochondria/drug effects , Animals , Cell Adhesion Molecules, Neuronal/therapeutic use , Disease Models, Animal , Energy Metabolism/drug effects , Humans , Injections, Intraperitoneal , Iron-Binding Proteins/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...