Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 45(5): 1112-1130, 2019 05.
Article in English | MEDLINE | ID: mdl-30890282

ABSTRACT

Myocardial stiffness exhibits cyclic variations over the course of the cardiac cycle. These trends are closely tied to the electromechanical and hemodynamic changes in the heart. Characterization of dynamic myocardialstiffness can provide insights into the functional state of the myocardium, as well as allow for differentiation between the underlying physiologic mechanisms that lead to congestive heart failure. Previous work has revealed the potential of acoustic radiation force impulse (ARFI) imaging to capture temporal trends in myocardial stiffness in experimental preparations such as the Langendorff heart, as well as on animals in open-chest and intracardiac settings. This study was aimed at investigating the potential of ARFI to measure dynamic myocardial stiffness in human subjects, in a non-invasive manner through transthoracic imaging windows. ARFI imaging was performed on 12 healthy volunteers to track stiffness changes within the interventricular septum in parasternal long-axis and short-axis views. Myocardial stiffness dynamics over the cardiac cycle was quantified using five indices: stiffness ratio, rates of relaxation and contraction and time constants of relaxation and contraction. The yield of ARFI acquisitions was evaluated based on metrics of signal strength and tracking fidelity such as displacement signal-to-noise ratio, signal-to-clutter level, temporal coherence of speckle and spatial similarity within the region of excitation. These were quantified using the mean ARF-induced displacements over the cardiac cycle, the contrast between the myocardium and the cardiac chambers, the minimum correlation coefficients of radiofrequency signals and the correlation between displacement traces across simultaneously acquired azimuthal beams, respectively. Forty-one percent of ARFI acquisitions were determined to be "successful" using a mean ARF-induced displacement threshold of 1.5 µm. "Successful" acquisitions were found to have higher (i) signal-to-clutter levels, (ii) temporal coherence and (iii) spatial similarity compared with "unsuccessful" acquisitions. Median values of these three metrics, between the two groups, were measured to be 13.42dB versus 5.42dB, 0.988 versus 0.976 and 0.984 versus 0.849, respectively. Signal-to-clutter level, temporal coherence and spatial similarity were also found to correlate with each other. Across the cohort of healthy volunteers, the stiffness ratio measured was 2.74 ± 0.86; the rate of relaxation, 7.82 ± 4.69/s; and the rate of contraction, -7.31±3.79 /s. The time constant of relaxation was 35.90 ± 20.04ms, and that of contraction was 37.24 ± 19.85ms. ARFI-derived indices of myocardial stiffness were found to be similar in both views. These results indicate the feasibility of using ARFI to measure dynamic myocardial stiffness trends in a non-invasive manner and also highlightthe technical challenges of implementing this method in the transthoracic imaging environment.


Subject(s)
Elasticity Imaging Techniques/methods , Heart/diagnostic imaging , Heart/physiology , Image Processing, Computer-Assisted/methods , Adult , Feasibility Studies , Heart/anatomy & histology , Humans , Reference Values , Reproducibility of Results , Young Adult
2.
Article in English | MEDLINE | ID: mdl-28885153

ABSTRACT

Conventional multiple-track-location shear wave elasticity imaging (MTL-SWEI) is a powerful tool for noninvasively estimating tissue elasticity. The resolution and noise levels of MTL-SWEI systems, however, are limited by ultrasound speckle. Single-track-location SWEI (STL-SWEI) is a novel variant which fixes the position of the tracking beam and modulates the push location to effectively cancel out the effects of speckle-induced bias. We present here a 3-D STL-SWEI system, which provides full suppression of lateral and elevation speckle bias for high-resolution volumetric elasticity imaging, and requires no spatial smoothing to make accurate measurements of shear wave speed. We demonstrate and analyze the system's performance in homogeneous and layered elasticity phantoms.


Subject(s)
Elasticity Imaging Techniques/methods , Imaging, Three-Dimensional/methods , Algorithms , Artifacts , Models, Biological , Phantoms, Imaging
3.
Article in English | MEDLINE | ID: mdl-28410102

ABSTRACT

Radio-frequency ablation (RFA) is used to locally disrupt electrical propagation in myocardium and treat arrhythmias, and direct visualization of ablation lesions by acoustic radiation force methods may benefit RFA procedures. This paper compares four imaging modalities, B-mode, acoustic radiation force impulse (ARFI), single-track-location shear wave elasticity imaging (STL-SWEI), and multiple-track-location shear wave elasticity imaging (MTL-SWEI), in their ability to resolve RFA lesions in four ex vivo experiments. Ablation lesions are shown to be marked by at least a local halving of ARFI displacements and doubling of shear wave speeds. In a controlled ablation of ex vivo porcine and canine cardiac tissue, STL-SWEI and ARFI are shown to have a similar CNR, better than MTL-SWEI and B-mode. The SWEI modalities are demonstrated to have improved imaging of distal lesion boundaries. Gaps smaller than 5 mm are visualized in ablation lines made of discretely spaced ablations, and complex structures are reconstructed through depth in an "x" ablation experiment. Scans of suspended atria show increased noise, but successfully visualize ablations in ARFI, MTL-SWEI, and STL-SWEI.


Subject(s)
Elasticity Imaging Techniques/methods , Imaging, Three-Dimensional/methods , Radiofrequency Ablation/methods , Surgery, Computer-Assisted/methods , Algorithms , Animals , Dogs , Heart Atria/diagnostic imaging , Heart Atria/surgery , Swine
4.
Article in English | MEDLINE | ID: mdl-26276953

ABSTRACT

Shear wave imaging techniques build maps of local elasticity estimating the local group velocity of induced mechanical waves. Velocity estimates are formed using the time delay in the motion profile of the medium at two or more points offset from the shear wave source. Because the absolute time-of-flight between any pair of locations scales with the distance between them, there is an inherent trade-off between robustness to time-of-flight errors and lateral spatial resolution based on the number and spacing of the receive points used for each estimate. This work proposes a method of using the time delays measured between all combinations of locations to estimate a noise-robust, high-resolution image. The time-of-flight problem is presented as an overdetermined system of linear equations that can be directly solved with and without spatial regularization terms. Finite element method simulations of acoustic radiation force-induced shear waves are used to illustrate the method, demonstrating superior contrast-to-noise ratio and lateral edge resolution characteristics compared with linear regression of arrival times. This technique may improve shear wave imaging in situations where time-of-flight noise is a limiting factor.


Subject(s)
Elasticity Imaging Techniques/methods , Image Processing, Computer-Assisted/methods , Algorithms , Computer Simulation , Finite Element Analysis , Phantoms, Imaging , Signal Processing, Computer-Assisted
5.
Ultrasound Med Biol ; 41(4): 1043-57, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25701531

ABSTRACT

Acoustic radiation force impulse imaging and shear wave elasticity imaging (SWEI) use the dynamic response of tissue to impulsive mechanical stimulus to characterize local elasticity. A variant of conventional, multiple-track-location SWEI, denoted single-track-location SWEI, offers the promise of creating speckle-free shear wave images. This work compares the three imaging modalities using a high push and track beam density combined acquisition sequence to image inclusions of different sizes and contrasts. Single-track-location SWEI is found to have a significantly higher contrast-to-noise ratio than multiple-track-location SWEI, allowing for operation at higher resolution. Acoustic radiation force impulse imaging and single-track-location SWEI perform similarly in the larger inclusions, with single-track-location SWEI providing better visualization of small targets ≤ 2.5 mm in diameter. The processing of each modality introduces different trade-offs between smoothness and resolution of edges and structures; these are discussed in detail.


Subject(s)
Elastic Modulus , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Models, Biological , Phantoms, Imaging
6.
J Cardiovasc Electrophysiol ; 25(12): 1275-83, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25132292

ABSTRACT

BACKGROUND: Visual confirmation of radiofrequency ablation (RFA) lesions during clinical cardiac ablation procedures could improve procedure efficacy, safety, and efficiency. It was previously shown that acoustic radiation force impulse (ARFI) imaging can identify RFA lesions in vitro and in vivo in an animal model. This is the "first-in-human" feasibility demonstration of intracardiac ARFI imaging of RFA lesions in patients undergoing catheter ablation for atrial flutter (AFL) or atrial fibrillation (AF). METHODS AND RESULTS: Patients scheduled for right atrial (RA) ablation for AFL or left atrial (LA) ablation for drug refractory AF were eligible for imaging. Diastole-gated intracardiac ARFI images were acquired using one of two equipment configurations: (1) a Siemens ACUSON S2000™ ultrasound scanner and 8/10Fr AcuNav™ ultrasound catheter, or (2) a CARTO 3™ integrated Siemens SC2000™ and 10Fr SoundStar™ ultrasound catheter. A total of 11 patients (AFL = 3; AF = 8) were imaged. ARFI images were acquired of ablation target regions, including the RA cavotricuspid isthmus (CTI), and the LA roof, pulmonary vein ostia, posterior wall, posterior mitral valve annulus, and the ridge between the pulmonary vein and LA appendage. ARFI images revealed increased relative myocardial stiffness at ablation catheter contact sites after RFA and at anatomical mapping-tagged RFA treatment sites. CONCLUSIONS: ARFI images from a pilot group of patients undergoing catheter ablation for AFL and AF demonstrate the ability of this technique to identify intra-procedure RFA lesion formation. The results encourage further refinement of ARFI imaging clinical tools and continued investigation in larger clinical trials.


Subject(s)
Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Cardiovascular Surgical Procedures/methods , Catheter Ablation/methods , Elasticity Imaging Techniques/methods , Surgery, Computer-Assisted/methods , Computer Systems , Echocardiography/methods , Feasibility Studies , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
7.
Article in English | MEDLINE | ID: mdl-25004538

ABSTRACT

Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) estimates indicated diastolic relaxation and systolic contraction in noninfarcted tissues. The M-mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared with the control. Where available, views of infarcted tissue were compared with similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared with the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, whereas in another view, a heterogeneous infarction was seen to be presenting itself as non-contractile in systole.


Subject(s)
Echocardiography/methods , Elasticity Imaging Techniques/methods , Endosonography/methods , Image Interpretation, Computer-Assisted/methods , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Animals , Elastic Modulus , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Shear Strength , Stress, Mechanical , Swine
8.
Ultrasound Med Biol ; 38(7): 1271-83, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22579544

ABSTRACT

Acoustic radiation force (ARF)-based methods have been demonstrated to be a viable tool for noninvasively estimating tissue elastic properties, and shear wave velocimetry has been used to measure quantitatively the stiffening and relaxation of myocardial tissue in open-chest experiments. Dynamic stiffness metrics may prove to be indicators for certain cardiac diseases, but a clinically viable means of remotely generating and tracking transverse wave propagation in myocardium is needed. Intracardiac echocardiography (ICE) catheter-tip transducers are demonstrated here as a viable tool for making this measurement. ICE probes achieve favorable proximity to the myocardium, enabling the use of shear wave velocimetry from within the right ventricle throughout the cardiac cycle. This article describes the techniques used to overcome the challenges of using a small probe to perform ARF-driven shear-wave velocimetry and presents in vivo porcine data showing the effectiveness of this method in the interventricular septum.


Subject(s)
Algorithms , Echocardiography/methods , Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Heart/physiology , Image Interpretation, Computer-Assisted/methods , Shear Strength/physiology , Animals , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...