Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9732, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679631

ABSTRACT

In the Arctic region, microbial degradation poses a significant threat to the preservation of archaeological deposits, actively consuming irreplaceable cultural and environmental records. In this study we assess the potential effects of the last 40 years of climate change on organic archaeological deposits within the UNESCO World Heritage area Kujataa in South Greenland. We use the dynamic process-oriented model, CoupModel to simulate soil temperatures and soil moisture contents at four archaeological sites in the area. The results show that the organic deposits have experienced a substantial warming the last 40 years, which combined with decreasing soil moisture contents creates a dangerous combination that can accelerate the degradation of organic materials. Currently, there are 583 archaeological sites registered within the area. Our findings highlight that the current climatic conditions are not conducive to organic preservation. The greatest risk of degradation lies within the relatively dry continental inland areas of the study region, where all Norse Viking Age settlements are situated. However, even at the "cold" and "wet" outer coast, the combined effects of rising summer temperatures and declining soil moisture levels may already be exerting a noticeable impact.

2.
Nat Hum Behav ; 6(12): 1723-1730, 2022 12.
Article in English | MEDLINE | ID: mdl-36203052

ABSTRACT

The success and failure of past cultures across the Arctic was tightly coupled to the ability of past peoples to exploit the full range of resources available to them. There is substantial evidence for the hunting of birds, caribou and seals in prehistoric Greenland. However, the extent to which these communities relied on fish and cetaceans is understudied because of taphonomic processes that affect how these taxa are presented in the archaeological record. To address this, we analyse DNA from bulk bone samples from 12 archaeological middens across Greenland covering the Palaeo-Inuit, Norse and Neo-Inuit culture. We identify an assemblage of 42 species, including nine fish species and five whale species, of which the bowhead whale (Balaena mysticetus) was the most commonly detected. Furthermore, we identify a new haplotype in caribou (Rangifer tarandus), suggesting the presence of a distinct lineage of (now extinct) dwarfed caribou in Greenland 3,000 years ago.


Subject(s)
DNA, Ancient , Reindeer , Animals , DNA, Ancient/analysis , Greenland , Archaeology
3.
Sci Rep ; 12(1): 3077, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197470

ABSTRACT

The combined effects of climate change and nutrient availability on Arctic vegetation growth are poorly understood. Archaeological sites in the Arctic could represent unique nutrient hotspots for studying the long-term effect of nutrient enrichment. In this study, we analysed a time-series of ring widths of Salix glauca L. collected at nine archaeological sites and in their natural surroundings along a climate gradient in the Nuuk fjord region, Southwest Greenland, stretching from the edge of the Greenlandic Ice Sheet in the east to the open sea in the west. We assessed the temperature-growth relationship for the last four decades distinguishing between soils with past anthropogenic nutrient enrichment (PANE) and without (controls). Along the East-West gradient, the inner fjord sites showed a stronger temperature signal compared to the outermost ones. Individuals growing in PANE soils had wider ring widths than individuals growing in the control soils and a stronger climate-growth relation, especially in the inner fjord sites. Thereby, the individuals growing on the archaeological sites seem to have benefited more from the climate warming in recent decades. Our results suggest that higher nutrient availability due to past human activities plays a role in Arctic vegetation growth and should be considered when assessing both the future impact of plants on archaeological sites and the general greening in landscapes with contrasting nutrient availability.

4.
Sci Total Environ ; 764: 144607, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33387770

ABSTRACT

Insect defoliations are a major natural disturbance in high-latitude ecosystems and are expected to increase in frequency and severity due to current climatic change. Defoliations cause severe reductions in biomass and carbon investments that affect the functioning and productivity of tundra ecosystems. Here we combined dendro-anatomical analysis with chemical imaging to investigate the direct and lagged effects of insect outbreaks on carbon investment. We analysed the content of lignin vs. holocellulose, i.e. unspecified carbohydrates in xylem samples of Salix glauca L. collected at Iffiartarfik, Nuuk fjord, Greenland, featuring two outbreak events of the moth Eurois occulta L. Cross sections of the growth rings corresponding to both outbreaks ±3 years were analysed using confocal Raman imaging to identify possible chemical signatures related to insect defoliation on fibres, vessels, and ray parenchyma cells and to get insight into species-specific defence responses. Outbreak years with narrower rings and thinner fibre cell walls are accompanied by a change in the content of cell-wall polymers but not their underlying chemistry. Indeed, during the outbreaks the ratio between lignin and carbohydrates significantly increased in fibre but not vessel cell walls due to an increase in lignin content coupled with a reduced content of carbohydrates. Parenchyma cell walls and cell corners did not show any significant changes in the cell-wall biopolymer content. The selective adjustment of the cell-wall composition of fibres but not vessels under stressful conditions could be related to the plants priority to maintain an efficient hydraulic system rather than mechanical support. However, the higher lignin content of fibre cell walls formed during the outbreak events could increase mechanical stiffness to the thin walls by optimizing the available resources. Chemical analysis of xylem traits with Raman imaging is a promising approach to highlight hidden effects of defoliation otherwise overlooked with classical dendroecological methods.


Subject(s)
Moths , Salix , Animals , Cell Wall , Disease Outbreaks , Ecosystem , Greenland , Lignin , Xylem
5.
Sci Rep ; 10(1): 14577, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32884059

ABSTRACT

Climate change is expected to accelerate the microbial degradation of the many extraordinary well-preserved organic archaeological deposits found in the Arctic. This could potentially lead to a major loss of wooden artefacts that are still buried within the region. Here, we carry out the first large-scale investigation of wood degradation within archaeological deposits in the Arctic. This is done based on wooden samples from 11 archaeological sites that are located along a climatic gradient in Western Greenland. Our results show that Ascomycota fungi are causing extensive soft rot decay at all sites regardless of climate and local environment, but the group is diverse and many of the species were only found once. Cadophora species known to cause soft rot in polar environments were the most abundant Ascomycota found and their occurrence in native wood samples underlines that they are present locally. Basidiomycota fungi were also present at all sites. In the majority of samples, however, these aggressive and potentially very damaging wood degraders have caused limited decay so far, probably due to unfavorable growth conditions. The presence of these wood degrading fungi suggests that archaeological wooden artefacts may become further endangered if climate change leads to more favorable growth conditions.

6.
Sci Rep ; 9(1): 9097, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296877

ABSTRACT

Across the Arctic, microbial degradation is actively destroying irreplaceable cultural and environmental records that have been preserved within archaeological deposits for millennia. Because it is not possible to survey the many sites in this remote part of the world, new methods are urgently needed to detect and assess the potential degradation. Here, we investigate organic deposits at seven archaeological sites located along the dominating west-east climatic gradient in West Greenland. We show that, regardless of age, depositional history and environmental conditions, all organic deposits are highly vulnerable to degradation. A state-of-the-art model that simulates the effect of future climate change on degradation indicates that 30-70% of the archaeological fraction of organic carbon (OC) could disappear within the next 80 years. This range reflects the variation within the climatic gradient and the future climate scenario applied (RCP 4.5 and RCP 8.5). All archaeological deposits are expected to experience a substantial loss, but the most rapid degradation seems to occur in the continental inland areas of the region, dominated by dry and warm summers. This suggests that organic remains from the Norse Viking Age settlers are especially under threat in the coming years.

7.
Sci Total Environ ; 654: 895-905, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30453259

ABSTRACT

Climate change has irrevocable consequences for the otherwise well-preserved archaeological deposits in the Arctic. Vegetation changes are expected to impact archaeological sites, but currently the effects are poorly understood. In this article we investigate five archaeological sites and the surrounding natural areas along a climate gradient in Southwest Greenland in terms of vegetation types, above- and below-ground biomass, soil geochemistry and spectral properties. The investigations are based on data from site-sampling and optical remote sensing from an unmanned aerial vehicle (UAV) and satellites. Results show that the archaeological sites are dominated by graminoids with approximately two times more above- and below-ground biomass than the surrounding areas, where the vegetation is more heterogeneous. This difference is associated with a 2-6 times higher content of plant available phosphorus and water extractable nitrate and ammonium in the archaeological deposits compared to the surrounding soil. Furthermore, the vegetation at archaeological sites is less affected by the regional climate variations than the surrounding natural areas. This suggests that soil-vegetation interactions at archaeological sites are markedly different from the natural environment. Thus, the long-term vulnerability of buried archaeological remains cannot be assessed based on existing projections of Arctic vegetation change. Finally, the study demonstrates that vegetation within archaeological sites has distinct spectral properties, and there is a great potential for using satellite imagery for large scale vegetation monitoring of archaeological sites and for archaeological prospection in the Arctic.


Subject(s)
Biota , Human Activities , Plants , Soil/chemistry , Archaeology , Biomass , Greenland
8.
Sci Rep ; 6: 28690, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27356878

ABSTRACT

The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action.

9.
Glob Chang Biol ; 21(6): 2410-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25788025

ABSTRACT

Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910-1930 to 1990-2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991-1996) and a positive effect on Betula nana radial growth, to a period (1997-2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed 'greening of the Arctic' which may further accelerate in future years due to both direct and indirect effects of winter warming.


Subject(s)
Betula/physiology , Ice Cover , Snow , Temperature , Arctic Regions , Climate Change , Greenland , Seasons , Soil , Tundra
10.
Environ Sci Technol ; 41(7): 2407-13, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17441279

ABSTRACT

Acid mine drainage (known as AMD) is a well-known environmental problem resulting from the oxidation of sulfidic mine waste. In cold regions, AMD is often considered limited by low temperatures most of the year and observed environmental impact is related to pollution generated during the warm summer period. Here we show that heat generation within an oxidizing, sulfidic, coal-mining waste-rock pile in Svalbard (78 degrees N) is high enough to keep the pile warm (roughly 5 degrees C throughout the year) despite mean annual air temperatures below -5 degrees C. Consequently, weathering processes continue year-round within the waste-rock pile. During the winter, weathering products accumulate within the pile because of a frozen outer layer on the pile and are released as a flush within 2 weeks of soil thawing in the spring. Consequently, spring runoff water contains elevated concentrations of metals. Several of these metals are taken up and accumulated in plants where they reach phytotoxic levels, including aluminum and manganese. Laboratory experiments document that uptake of Al and Mn in native plant species is highly correlated with dissolved concentrations. Therefore, future remedial actions to control the adverse environmental impacts of cold region coal-mining need to pay more attention to winter processes including AMD generation and accumulation of weathering products.


Subject(s)
Environmental Monitoring/statistics & numerical data , Mining , Plants/drug effects , Seasons , Temperature , Waste Products/analysis , Water Pollutants, Chemical/analysis , Analysis of Variance , Arctic Regions , Metals, Heavy/analysis , Metals, Heavy/toxicity , Models, Chemical , Plants/metabolism , Soil/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...