Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220196, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37866387

ABSTRACT

This paper provides an introduction to the special issue of the Philosophical Transactions of the Royal Society of London of papers from the 2022 Royal Society meeting on 'Atlantic overturning: new observations and challenges'. It provides the background and rationale for the meeting, briefly summarizes prior progress on observing the Atlantic overturning circulation and draws out the new challenges that papers presented at the meeting raise, so pointing the way forward for future research. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
Commun Earth Environ ; 4(1): 181, 2023.
Article in English | MEDLINE | ID: mdl-37250099

ABSTRACT

Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.

3.
Nat Commun ; 11(1): 585, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996687

ABSTRACT

The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.

SELECTION OF CITATIONS
SEARCH DETAIL
...