Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 96(5): 673-680, 2012 May.
Article in English | MEDLINE | ID: mdl-30727514

ABSTRACT

The associations between Fusarium head blight (FHB), caused by Gibberella zeae, and deoxynivalenol (DON) accumulation in spring malting barley (Hordeum vulgare) and hourly weather conditions predictive of DON accumulation were examined using data from six growing seasons in the U.S. Northern Great Plains. Three commonly grown cultivars were planted throughout the region, and FHB disease and DON concentration were recorded. Nine predictor variables were calculated using hourly temperature and relative humidity during the 10 days preceding full head spike emergence. Simple logistic regression models were developed using these predictor variables based on a binary threshold for DON of 0.5 mg/kg. Four of the nine models had sensitivity greater than 80%, and specificity of these models ranged from 67 to 84% (n = 150). The most useful predictor was the joint effect of average hourly temperature and a weighted duration of uninterrupted hours (h) with relative humidity greater than or equal to 90%. The results of this study confirm that FHB incidence is significantly associated with DON accumulation in the grain and that weather conditions prior to full head emergence could be used to accurately predict the risk of economically significant DON accumulation for spring malting barley.

2.
Plant Dis ; 92(9): 1339-1348, 2008 Sep.
Article in English | MEDLINE | ID: mdl-30769453

ABSTRACT

Spring wheat (Triticum aestivum) crop losses in the Red River Valley of Minnesota and North Dakota caused by Fusarium head blight (FHB) epidemics incited by Fusarium graminearum are common. Fungicide application is often recommended when environments promote disease development but benefits have not been fully evaluated when environment, cultivar resistance, and economic outcome are considered. Agronomic and economic characters were determined for cultivars with various resistance levels when treated with no fungicide; propiconazole at 63 g active ingredient (a.i.)/ha applied at Feekes growth stage (FGS) 2, tebuconazole at 126 g a.i./ha applied at FGS 10.51, or propiconazole at 63 g a.i./ha applied at FGS 2 followed by tebuconazole at 126 g a.i./ha applied at FGS 10.51. Revenue returned from FHB moderately susceptible (MS) cultivars was 8% greater than moderately resistant (MR) cultivars in low-disease environs but differences were not significant when disease was moderate. Deoxynivalenol accumulation in grain of MS and MR cultivars was unchanged by fungicide treatment. MS cultivars were economically more adventitious to grow than MR cultivars in both disease environments.

3.
Plant Dis ; 92(4): 623-630, 2008 Apr.
Article in English | MEDLINE | ID: mdl-30769643

ABSTRACT

Aster yellows (AY), a disease of small grain crops caused by aster yellows phytoplasma (AYp), produces disease symptoms similar to barley yellow dwarf (BYD). From 2003 to 2005, small grain production fields in Minnesota and North Dakota were surveyed to determine the incidences of AY and BYD. In-field spatial patterns of AY-infected plants also were investigated. Plants collected along a five-point transect line were tested for AYp using nested polymerase chain reaction (PCR) and quantitative real-time PCR assays, and extracted plant sap was tested for serotypes PAV and RPV of Barley yellow dwarf virus (BYDV) using enzyme-linked immunosorbent assays. During 2003, 2004, and 2005, AYp was detected in plants from 49, 15, and 7% of tested fields, respectively, whereas BYDV was found in plants from 2, 0, and 5% of fields, respectively. Average amplicon count number indicated an in-field spatial trend for greater incidence of AYp and increased populations of AYp in plants located near field edges, with comparably low copy numbers at transect point locations toward the direction of field center. AY is likely a common but largely undetected disease on small grain crops in the Upper Midwest.

4.
Plant Dis ; 91(5): 551-558, 2007 May.
Article in English | MEDLINE | ID: mdl-30780700

ABSTRACT

Brown root rot of alfalfa (Medicago sativa), caused by Phoma sclerotioides, has been reported in several states in the northern United States and in western Canada. A survey was conducted to determine the distribution of the fungus in Minnesota and Wisconsin. Isolates of the pathogen were recovered from roots of alfalfa, winter wheat, and perennial ryegrass plants. The internal transcribed spacer (ITS) 1, 5.8S, and ITS2 of the rDNA of the isolates from alfalfa and wheat were identical and matched the sequences of a P. sclerotioides isolate from Wyoming. The fungus was found to be widespread in both states and was detected in roots of alfalfa plants from 17 counties in Minnesota and 14 counties in Wisconsin using polymerase chain reaction (PCR)-based assays. A real-time PCR assay was developed that increased sensitivity of detecting the pathogen from plant tissues and soil. The isolates from alfalfa caused disease on inoculated winter wheat plants. Although the fungus was previously found associated with roots of diseased cereal and turfgrass plants, this is the first demonstration of pathogenicity of P. sclerotioides on wheat.

5.
Plant Dis ; 86(9): 928-932, 2002 Sep.
Article in English | MEDLINE | ID: mdl-30818550

ABSTRACT

A rapid technique for identification and detection of Phoma sclerotioides, the causal agent of brown root rot of alfalfa, has been developed using polymerase chain reaction (PCR). Amplification products obtained from random amplified polymorphic DNA (RAPD) reactions were cloned and sequenced, and two extended primer sets were designed from the resulting data that were used to detect sequence-characterized DNA markers. A single 499-bp DNA amplification product was consistently obtained from primers PSB12499 that was specific for 19 isolates of P.sclerotioides but was not produced from Phoma medicaginis or Phoma betae, or from other soilborne pathogens including Aphanomyces euteiches, Rhizoctonia solani, Fusarium oxysporum, Pythium ultimum, or Phytophthora infestans. A 499-bp amplification product was also produced from root tissue known to be infected with the fungus as verified by microscopic examination. A similar PCR product was obtained from soil samples collected from fields with an established infection of P. sclerotioides on alfalfa. This PCR-based assay enables detection of P. sclerotioides from alfalfa root tissue and in soil samples in a single day, including extraction of DNA, compared with standard methods that require up to 100 days for identification using agar media.

6.
Plant Dis ; 83(11): 1071, 1999 Nov.
Article in English | MEDLINE | ID: mdl-30841282

ABSTRACT

Phoma sclerotioides G. Preuss ex Sacc. (previously named Plenodomus meliloti Dearn. & G.B. Sanford) is associated with root rot and extensive winterkill of leguminous forage crops, such as clover (Trifolium and Melilotus spp.), sainfoin (Onobrychis viciifolia), and alfalfa (Medicago sativa). Winterkill and root rot of irrigated alfalfa were observed for the first time in a field of cv. Multiplier in western Wyoming during the spring of 1996. Dark brown to black, sunken, rotting lesions were noted on upper secondary roots and taproots of dead and living diseased plants. Superficial and embedded beaked pycnidia and pycnosclerotia were observed near root lesions. A Phoma sp. isolated from a diseased plant in Farson, WY, was maintained on potato dextrose and half-strength V8-juice agars. Beaked pycnidia, typical of P. sclerotioides, were observed in culture when grown at 10°C for 2 months. A pathogenicity test was performed on cv. Multiplier. Two barley seeds colonized by a Phoma sp. derived from a Wyoming isolate were positioned on taproots of healthy, greenhouse-grown, 5-month-old plants ≈2.5 cm below the crown and were covered with a small piece of sterile cotton. Three replicate samples (24 plants inoculated and 24 plants uninoculated per replicate) were winter-hardened for 4 weeks (15.6°C/10°C, day/night, for 2 weeks, followed by 10°C/7.2°C, day/night, for 2 weeks) and placed outside during January 1998 in Laramie, WY, for a 4-month winter exposure period. Plants were rated for disease during June 1998. A disease severity rating of 1 to 5 was assigned to each experimental unit, where 1 = no disease and 5 = dead plant. The percentage of diseased plants at each severity rating for all inoculated plants was 1 = 19%, 2 = 33%, 3 = 31%, 4 = 13%, and 5 = 4%. Mycelium typical of P. sclerotioides was found on 99% of inoculated plant roots whether or not they had pycnidia. Pycnidia were found on the lower stems and petioles of some inoculated plants. Three percent of control plants also developed brown root rot (BRR) symptoms (taproot lesions or discoloration) by June 1998. The percentage of diseased plants at each severity rating for all uninoculated plants was 1 = 96%, 2 = 4%, and 3 through 5 = 0%. Aboveground propagule placement likely contributed to the spread of BRR by raindrop splash and wind-driven plant debris to adjacent alfalfa. Most inoculated plants had immature pycnidia or protopycnidia (94%), whereas 6.9% of the plants also had fully mature, beaked pycnidia. Pure fungal cultures were obtained from several diseased roots and compared with the original Wyoming Phoma sp. culture and a Canada isolate of P. sclerotioides (ATCC no. 56515) (2): colony, pycnidial, and conidial morphologies were identical, completing Koch's postulates. This is the first report of BRR on alfalfa in the continental United States. References: (1) J. G. N. Davidson. 1990. Brown root rot. Pages 29-31 in: Compendium of Alfalfa Disease. 2nd ed. The American Phytopathological Society, St. Paul, MN. (2) C. R. Hollingsworth et al. Phytopathology 88(suppl.):S39, 1999.

SELECTION OF CITATIONS
SEARCH DETAIL
...