Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 580(3): 314-21, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-18054908

ABSTRACT

Activation of metabotropic glutamate (mGlu) receptors has previously been shown to play a role in inflammatory or neuropathic pain states. However, the role of mGlu type 1 receptors in post-operative pain remains to be investigated. In the present study, effects of potent and selective mGlu1 receptor antagonists A-841720, A-794282, A-794278, and A-850002 were evaluated in a skin incision-induced post-operative pain model in rats. Post-operative pain was examined 2 h following surgery using weight-bearing difference between injured and uninjured paws as a measure of spontaneous pain. In this model, A-841720, A-794282, A-794278, and A-850002 induced significant attenuation of spontaneous post-operative pain behavior, with ED50s of 10, 50, 50, and 65 micromol/kg i.p., respectively. Depending on the compound, significant motor side effects were also observed at 3 to 10 fold higher doses. These results support the notion that mGlu1 receptor activation plays a significant role in nociceptive transmission in post-operative pain, though motor impairment may be a limiting factor in developing mGlu1 receptor antagonists as novel analgesics.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Pain, Postoperative/prevention & control , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Analgesics, Non-Narcotic/chemistry , Animals , Calcium/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/metabolism , Dimethylamines/chemistry , Dimethylamines/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/chemistry , Exploratory Behavior/drug effects , Fluorometry/methods , Glycine/analogs & derivatives , Glycine/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Hindlimb/surgery , Male , Molecular Structure , Morphine/pharmacology , Pain, Postoperative/etiology , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Resorcinols/pharmacology , Rotarod Performance Test/methods , Thiophenes/chemistry , Thiophenes/pharmacology , Tritium
2.
Biochem Pharmacol ; 73(8): 1123-34, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17214974

ABSTRACT

Deficits in attention and response inhibition are apparent across several neurodegenerative and neuropsychiatric disorders for which current pharmacotherapy is inadequate. While it is difficult to model such executive processes in animals, the 5-choice serial reaction time test (5-CSRTT), which originated from the continuous performance test (CPT) in humans, may serve as a useful translational assay for efficacy in these key behavioral domains. At Wyeth and Abbott, we recently investigated the utility of employing the 5-CSRTT in adult rats. This involved training and testing groups of rats over an extended period of several months and required the animals to learn to nose-poke into one of five apertures following presentation of a brief visual stimulus in that aperture in order to obtain a food reward. When the stimulus duration was short, the rat had to pay close attention to make a correct choice--a nose-poke into the aperture with the brief visual stimulus. We evaluated nicotine and the histamine H(3) receptor antagonist, ciproxifan, since compounds targeting both nicotinic and histaminergic neurotransmission are currently under investigation for treating cognitive dysfunction in ADHD, AD and schizophrenia. After approximately 12 weeks of training, rats were tested with drug when they had achieved stable performance. Nicotine (0.2, 0.4 mg/kg s.c.) significantly improved accuracy and reduced errors of omission (reflecting improved attention and vigilance) when baseline performance was <90% correct. In contrast, nicotine tended to worsen accuracy when baseline performance was >90% correct. Using the same test paradigm, ciproxifan (3mg/kg i.p.) reduced premature responding, a measure of impulsivity. Under conditions of variable stimulus duration, ciproxifan also improved accuracy and decreased impulsivity. In summary, we have replicated previous findings by others of positive effects of nicotine on attention, but also showed that this is dependent on baseline performance. We also expanded on previous positive findings by others with ciproxifan on attention and both Wyeth and Abbott demonstrate for the first time decreased impulsivity with this mechanism.


Subject(s)
Attention/drug effects , Choice Behavior/drug effects , Imidazoles/pharmacology , Impulsive Behavior/physiopathology , Nicotine/pharmacology , Reaction Time/drug effects , Animals , Attention/physiology , Choice Behavior/physiology , Drug Interactions , Histamine Antagonists/pharmacology , Male , Psychomotor Performance/drug effects , Rats , Rats, Long-Evans , Reaction Time/physiology
3.
J Med Chem ; 49(25): 7450-65, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17149874

ABSTRACT

The goal of this study was to identify a structurally distinct D(4)-selective agonist with superior oral bioavailability to our first-generation clinical candidate 1a (ABT-724) for the potential treatment of erectile dysfunction. Arylpiperazines such as (heteroarylmethyl)piperazine 1a, benzamide 2, and acetamides such as 3a,b exhibit poor oral bioavailability. Structure-activity relationship (SAR) studies with the arylpiperidine template provided potent partial agonists such as 4d and 5k that demonstrated no improvement in oral bioavailability. Further optimization with the (N-oxy-2-pyridinyl)piperidine template led to the discovery of compound 6b (ABT-670), which exhibited excellent oral bioavailability in rat, dog, and monkey (68%, 85%, and 91%, respectively) with comparable efficacy, safety, and tolerability to 1a. The N-oxy-2-pyridinyl moiety not only provided the structural motif required for agonist function but also reduced metabolism rates. The SAR study leading to the discovery of 6b is described herein.


Subject(s)
Benzamides/chemical synthesis , Cyclic N-Oxides/chemical synthesis , Erectile Dysfunction/drug therapy , Receptors, Dopamine D4/agonists , Action Potentials , Administration, Oral , Animals , Benzamides/chemistry , Benzamides/pharmacology , Biological Availability , Cell Line , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/pharmacology , Dogs , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/physiology , Haplorhini , Humans , In Vitro Techniques , Male , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Purkinje Fibers/physiology , Rats , Structure-Activity Relationship
4.
J Med Chem ; 49(17): 5093-109, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-16913699

ABSTRACT

A new series of dopamine D4 receptor agonists, 1-aryl-3-(4-pyridinepiperazin-1-yl)propanone oximes, was designed through the modification of known dopamine D4 receptor agonist PD 168077. Replacement of the amide group with a methylene-oxime moiety produced compounds with improved stability and efficacy. Structure-activity relationsips (SAR) of the aromatic ring linked to the N-4-piperazine ring confirmed the superiority of 2-pyridine as a core for D4 agonist activity. A two-methylene linker between the oxime group and the N-1-piperazine ring displayed the best profile. New dopamine D4 receptor agonists, exemplified by (E)-1-(4-chlorophenyl)-3-(4-pyridin-2-ylpiperazin-1-yl)propan-1-one O-methyloxime (59a) and (E)-1-(3-chloro-4-fluorophenyl)-3-(4-pyridin-2-ylpiperazin-1-yl)propan-1-one O-methyloxime (64a), exhibited favorable pharmacokinetic profiles and showed oral bioavailability in rat and dog. Subsequent evaluation of 59a in the rat penile erection model revealed in vivo activity, comparable in efficacy to apomorphine. Our results suggest that the oximes provide a novel structural linker for 4-arylpiperazine-based D4 agonists, possessing leadlike quality and with potential to develop a new class of potent and selective dopamine D4 receptor agonists.


Subject(s)
Erectile Dysfunction/drug therapy , Oximes/pharmacology , Piperazines/pharmacology , Receptors, Dopamine D4/agonists , Animals , Benzamides/chemistry , Benzamides/pharmacology , Binding Sites , Cell Line , Crystallography, X-Ray , Disease Models, Animal , Drug Evaluation, Preclinical , Ferrets , Humans , Male , Models, Molecular , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Piperazines/chemical synthesis , Piperazines/chemistry , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
5.
Pharmacol Biochem Behav ; 81(4): 797-804, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16005055

ABSTRACT

A series of in vivo studies in a conscious rat model was conducted to investigate the role of oxytocinergic and dopaminergic neurotransmission in the central regulation of penile erection. Oxytocin, when administrated either intracerebroventricularly (i.c.v.) or intrathecally (i.t.) at the spinal levels of L4-L6, produced dose-related erectogenic effects with a maximum at 0.1 microg/rat i.c.v. or 0.03 microg/rat i.t. Oxytocin-evoked penile activity was attenuated by the inhibitory effect of the selective oxytocin antagonist vasotocin analog [Pmp-Tyr(Me)-Ile-Thr-Asn-Cys]-Pro-Orn-Tyr-NH2 (0.1-1 microg, i.c.v. or i.t.). Penile erection induced by oxytocin was blocked by the dopaminergic receptor antagonist clozapine (1-10 micromol/kg i.p.) in a dose-dependent manner. Conversely, oxytocin antagonist microinjected locally (i.c.v. or i.t.) significantly attenuated the pro-erectile effects of systemic (s.c.) apomorphine, a centrally acting erectogenic agent through dopaminergic receptors. Together, these data indicate a possible concomitant role between dopamine and oxytocin in mediating penile erection at both the spinal and supraspinal sites.


Subject(s)
Dopamine Antagonists/pharmacology , Oxytocin/pharmacology , Penile Erection/drug effects , Animals , Apomorphine/pharmacology , Clozapine/administration & dosage , Clozapine/pharmacology , Dopamine Agonists/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Injections, Intraventricular , Injections, Spinal , Injections, Subcutaneous , Male , Models, Biological , Oxytocin/administration & dosage , Rats , Rats, Wistar , Vasotocin/administration & dosage , Vasotocin/analogs & derivatives , Vasotocin/pharmacology
6.
Pain ; 114(1-2): 195-202, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15733645

ABSTRACT

Metabotropic glutamate receptors (mGluRs) have previously been shown to play a role in pain transmission during inflammatory or neuropathic pain states. However, the role of mGluR5 in post-operative pain remains to be fully investigated. The present study was conducted to characterize analgesic activity of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) in the skin-incision-induced post-operative pain model in rats. MPEP is a potent and selective mGluR5 antagonist with high affinity (K(i)=6.3+/-0.9 nM) in rat cortex using [(3)H]-MPEP as a radioligand, while not competing with the mGluR1-selective radioligand [(3)H]-R214127 (K(i)>10,000 nM) in rat cerebellum. Post-operative pain was examined 2 h following surgery using weight-bearing (WB) difference between injured and uninjured paws as a measure of non-evoked pain. In this model, MPEP, as morphine, showed dose-dependent effects and full efficacy after systemic administration (ED(50)=15 mg/kg, i.p. for MPEP, ED(50)=1.3 mg/kg, s.c. for morphine). In addition, intrathecal (i.t.) and intracerebroventricular (i.c.v.) MPEP reduced WB difference (ED(50)=65 microg/rat i.t. and ED(50)=200 microg/rat i.c.v.). Interestingly, intraplantar (i.pl.) injection of MPEP either before or after surgery induced a similar reduction in WB difference (ED(50)=90 microg/rat, i.pl.) while contralateral i.pl. MPEP injection did not produce any effect. These results demonstrate that both peripheral and central mGluR5 receptors play a role in nociceptive transmission observed during post-operative pain. In addition, the data suggest that mGluR5 antagonists could offer a new therapeutic approach to the treatment of post-operative pain.


Subject(s)
Pain, Postoperative/metabolism , Receptors, Metabotropic Glutamate/physiology , Animals , Dose-Response Relationship, Drug , Male , Morphine/pharmacology , Morphine/therapeutic use , Pain, Postoperative/drug therapy , Protein Binding/drug effects , Protein Binding/physiology , Pyridines/metabolism , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/antagonists & inhibitors
7.
J Med Chem ; 47(15): 3853-64, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15239663

ABSTRACT

A new class of agents with potential utility for the treatment of erectile dysfunction has been discovered, guided by the hypothesis that selective D4 agonists are erectogenic but devoid of the side effects typically associated with dopaminergic agents. The lead agent 2-(4-pyridin-2-ylpiperazin-1-ylmethyl)-1H-benzimidazole (1, ABT-724) was discovered by optimization of a series of benzimidazole arylpiperazines. This highly selective D4 agonist was found to be very potent and efficacious in vivo, eliciting penile erections in rats at a dose of 0.03 micromol/kg, with a positive response rate of 77% erectile incidence. Even at high doses, it was devoid of side effects in animal models of central nervous system behaviors, emesis, or nausea. The structure-activity relationship of the parent benzimidazole series leading to 1 is described, with the detailed in vitro and in vivo profiles described. Distinctive structural features were discovered that are associated with D4 selective agonism in this series of analogues.


Subject(s)
Benzimidazoles/chemical synthesis , Erectile Dysfunction/drug therapy , Piperazines/chemical synthesis , Pyridines/chemical synthesis , Receptors, Dopamine D2/agonists , Animals , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/toxicity , Cell Line , Ferrets , Humans , Male , Penile Erection/drug effects , Piperazines/chemistry , Piperazines/pharmacology , Piperazines/toxicity , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/toxicity , Radioligand Assay , Rats , Rats, Wistar , Receptors, Dopamine D4 , Structure-Activity Relationship , Vomiting/chemically induced
8.
J Pharmacol Exp Ther ; 308(1): 330-8, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14569075

ABSTRACT

Apomorphine has been used as a pharmacological probe of dopaminergic receptors in a variety of central nervous system disorders. The utility of apomorphine as an agent for the treatment of erectile dysfunction has also been demonstrated clinically. Apomorphine is a nonselective dopaminergic receptor agonist with potent binding affinity (Ki) of 101, 32, 26, 2.6, and 10 nM for D1, D2, D3, D4, and D5, respectively. When administered either subcutaneously (s.c.) or intracerebroventricularly (i.c.v.), apomorphine fully evoked penile erections in conscious rats with maximum effect at 0.1 micromol/kg s.c. and 3 nmol/rat i.c.v., respectively. Apomorphine was less efficacious when injected intrathecally (i.t.) to L4-L6 spinal levels (50% at 30-100 nmol/rat i.t.). Penile erection facilitated by apomorphine was blocked by haloperidol and clozapine (i.p. and i.c.v.) but not by domperidone (a peripherally acting dopaminergic receptor antagonist). In this model using conscious rats, penile erection was significantly induced by quinpirole (D2-D3-D4 receptor agonist), but not by R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol (SKF38393) and R(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzapine (SKF81297) (D1 receptor agonists), or a D2 receptor agonist R-5,6-dihydro-N,N-dimethyl-4H-imidazo[4,5,1-ij]quinolin-5-amine (PNU-95666E). The role of D4 receptors in penile erection was demonstrated using selective D4 receptor agonists [(4-phenylpiperazinyl)-methyl]benzamide (PD168077) and 5-fluoro-2-[[4-(2-pyridinyl)-1-piperazinyl]methyl]-1H-indole (CP226269), whether administered systemically (s.c.) or locally in the brain (i.c.v.). The ability of apomorphine to activate D3 receptors in relation to its proerectile activity remains to be elucidated by use of selective subtype agonists. These results suggest that the proerectile action of apomorphine in rats is mediated at supraspinal levels and that this effect is not mimicked by a D2 receptor agonist but associated with activation of D4 receptors.


Subject(s)
Apomorphine/pharmacology , Dopamine Agonists/pharmacology , Penile Erection/drug effects , Animals , Apomorphine/pharmacokinetics , Dopamine Agonists/pharmacokinetics , Injections, Intraventricular , Male , Penile Erection/physiology , Rats , Rats, Wistar , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...