Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 9278, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35661773

ABSTRACT

Diagenetic boundaries are paleo-reaction fronts, which have the potential to archive the termination of metasomatic processes in sedimentary rocks. They have not been extensively studied, perhaps because they appear simple in outcrop. Recent work has demonstrated the significance of paleo-reaction fronts to decipher multiphase recrystallization processes and provide high porosity zones. This paper provides a detailed documentation of reaction front evolution in a tectonically active salt basin and reveals a high level of complexity, associated with multiple fluid flow and tectonic events. Here, consistent patterns of increasing dolomite stoichiometry and ordering, along with a change from seawater-derived, fabric-retentive dolomite to fracture-controlled, fabric-destructive hydrothermal dolomite are observed vertically across the stratabound dolomite bodies. These patterns, coupled with a decrease in porosity, increase in ∆47 temperature and δ18Owater values indicate multiphase recrystallization and stabilization by warm, Mg-rich fluids. The stratabound dolomite bodies apparently terminated at a fracture-bound contact, but the presence of dolomite fragments within the fracture corridor suggests that fracturing post-dated the first dolomitization event. The termination of dolomite formation is therefore interpreted to be associated with a decrease in the capacity of the magnesium-rich fluids to dolomitize the rock, as indicated by the presence of non-stoichiometric and poorly ordered dolomite at the reaction fronts. The fracture corridors are interpreted to exploit dolostone-limestone boundaries, forming prior to a later, higher temperature, hydrothermal dolomitization event, which coincided with the formation and growth of the anticline. Karstification subsequently exploited these fracture corridors, widening fractures and leading to localized collapse and brecciation. The results demonstrate that an apparently simple reaction front can have a complex history, governed by the inheritance of prior diagenetic events. These events modified rock properties in such a way that fluid flow was repeatedly focused along the original dolomite-limestone boundary, overprinting much of its original signature. These findings have implications to the prediction of structurally controlled diagenetic processes and the exploration of naturally fractured carbonate reservoirs for energy exploration globally.

2.
Sci Rep ; 11(1): 21732, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741100

ABSTRACT

Carbonate rocks undergo low-temperature, post-depositional changes, including mineral precipitation, dissolution, or recrystallisation (diagenesis). Unravelling the sequence of these events is time-consuming, expensive, and relies on destructive analytical techniques, yet such characterization is essential to understand their post-depositional history for mineral and energy exploitation and carbon storage. Conversely, hyperspectral imaging offers a rapid, non-destructive method to determine mineralogy, while also providing compositional and textural information. It is commonly employed to differentiate lithology, but it has never been used to discern complex diagenetic phases in a largely monomineralic succession. Using spatial-spectral endmember extraction, we explore the efficacy and limitations of hyperspectral imaging to elucidate multi-phase dolomitization and cementation in the Cathedral Formation (Western Canadian Sedimentary Basin). Spectral endmembers include limestone, two replacement dolomite phases, and three saddle dolomite phases. Endmember distributions were mapped using Spectral Angle Mapper, then sampled and analyzed to investigate the controls on their spectral signatures. The absorption-band position of each phase reveals changes in %Ca (molar Ca/(Ca + Mg)) and trace element substitution, whereas the spectral contrast correlates with texture. The ensuing mineral distribution maps provide meter-scale spatial information on the diagenetic history of the succession that can be used independently and to design a rigorous sampling protocol.

SELECTION OF CITATIONS
SEARCH DETAIL
...