Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(25): 11604-11615, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38864676

ABSTRACT

We report the synthesis and characterization of a series of BNP-incorporated borafluorenate heterocycles formed via thermolysis reactions of pyridylphosphine and bis(phosphine)-coordinated borafluorene azides. The use of diphenyl-2-pyridylphosphine (PyPh2P), trans-1,2-bis(diphenylphosphino)ethylene (Ph2P(H)C═C(H)PPh2), and bis(diphenylphosphino)methane (Ph2PC(H2)PPh2) as stabilizing ligands resulted in Staudinger reactions to form complex heterocycles with four- (BN2P, BNPC, P2N2) and five-membered (BNP2C and BN2PC) rings, which were successfully isolated and fully characterized by multinuclear NMR and X-ray crystallography. However, when bis(diphenylphosphino)benzene (Ph2P-Ph-PPh2) was used as the ligand in a reaction with 9-bromo-9-borafluorene (BF-Br), due to the close proximity of the donor P atoms, the diphosphine-stabilized borafluoronium ion with an unusual borafluorene dibromide anion was formed. Reaction of the borafluoronium ion with trimethylsilyl azide left the cation intact, and the dibromide anion was substituted by a diazide. Density functional theory calculations were used to provide mechanistic insight into the formation of these new boracyclic compounds. This work highlights a new method in which donor phosphine ligands may be used to promote dimerization, cyclization, and ring contraction reactions to produce boracycles via Staudinger reactions.

2.
Acc Chem Res ; 57(10): 1510-1522, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38708938

ABSTRACT

ConspectusBoron heterocycles represent an important subset of heteroatom-incorporated rings, attracting attention from organic, inorganic, and materials chemists. The empty pz orbital at the boron center makes them stand out as quintessential Lewis acidic molecules, also serving as a means to modulate electronic structure and photophysical properties in a facile manner. As boracycles are ripe for extensive functionalization, they are used in catalysis, chemical biology, materials science, and continue to be explored as chemical synthons for conjugated materials and reagents. Neutral boron(III)-incorporated polycyclic molecules are some of the most studied types of boracycles, and understanding their redox transformations is important for applications relying on electron transfer and charge transport. While relevant redox species can often be electrochemically observed, it remains challenging to isolate and characterize boracycles where the boron center and/or polycyclic skeleton have been chemically reduced.We describe our recent work isolating 5-, 6-, and 7-membered boracyclic radicals, anions, and cations, focusing on stabilization strategies, ligand-mediated bonding situations, and reactivity. We present a versatile neutral ligand coordination chemistry approach that permits the transformation of boracycles from potent electrophiles to powerful nucleophilic heterocycles that facilitate diverse electron transfer and bond activation chemistry. Although there are a wide range of suitable stabilizing ligands, we have employed both diamino-N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs), which led to boracycles with tunable electronic structures and aromaticity trends. We highlight successful isolation of borafluorene radicals and demonstrate their reversible redox behavior, undergoing oxidation to the cation or reduction to the anion. The borafluorene anion is a chemical synthon that has been used to prepare boryl main-group and transition-metal bonds, luminescent oxabora-spirocycles, borafluorenate-crown ethers, and CO-releasing molecules via carbon dioxide activation. We expanded to 6-membered boracycles and characterized neutral bis(NHC-supported 9-boraphenanthrene)s and the corresponding bis(CAAC-stabilized 9-boraphenanthrene) biradical. We detail the interconvertible multiredox states of boraphenalene, where the boraphenalenyl radical, anion, and cation mimic the charge-states of the all-hydrocarbon analogue. Reactivity studies of the boraphenalenyl anion displayed unusual nucleophilic reactivity at multiple sites on the periphery of the boraphenalenyl tricyclic scaffold. Reduced borepins, 7-membered boron containing heterocycles, have also been isolated. We used a stepwise one-pot synthesis combining the halo-borepin precursor, CAAC, and KC8 to afford the monomeric borepin radicals and anions. The π-system was extended to contain two borepin rings fused in a pentacyclic scaffold, which permitted isolation of diborepin biradicals and a diborepin containing a dibora-quinone core.Our goal is to provide a guide explaining the current structure-function trends and isolation strategies for redox-active boron-incorporated polycyclic molecules to initiate the rational design and use of these types of compounds across a vast chemical space.

3.
J Am Chem Soc ; 146(10): 6506-6515, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38420913

ABSTRACT

Systems that possess open- and closed-shell behavior attract significant attention from researchers due to their inherent redox and charge transport properties. Herein, we report the synthesis of the first diborepin biradicals. They display tunable biradical character based on the steric and electronic profile of the stabilizing ligand and the resulting geometric deviation of the diborepin core from planarity. While there are numerous all-carbon-based biradical systems, boron-based biradical compounds are comparatively rare, particularly ones in which the radical sites are disjointed. Calculations using density functional theory (DFT) and multireference methods demonstrate that the fused diborepin scaffold exhibits high biradical character, up to 95%. Use of a nonsterically demanding diaminocarbene promotes the planarization of the pentacyclic framework, resulting in the synthetic realization of a diborepin containing a dibora-quinoidal core, which possesses a closed-shell ground state and thermally accessible triplet state. The biradicals were structurally authenticated and characterized by both solution and solid-state electron paramagnetic resonance (EPR) spectroscopy. Half-field transitions were observed at low temperatures (about 170 K), confirming the presence of the triplet state. Initial reactivity studies of the biradicals led to the isolation and structural characterization of bis(borepin hydride) and bis(borepin dianion).

4.
J Am Chem Soc ; 146(9): 6145-6156, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38380615

ABSTRACT

Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.

5.
Inorg Chem ; 62(39): 15809-15818, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37715684

ABSTRACT

A series of BN-incorporated borafluorenate heterocycles, bis(borafluorene-phosphinimine)s (11-15), have been formed via intramolecular Staudinger-type reactions. The reactions were promoted by light or heat using monodentate phosphine-stabilized 9-azido-9-borafluorenes (R3P-BF-N3; 6-10) and involve the release of dinitrogen (N2), migration of phosphine from boron to nitrogen, and oxidation of the phosphorus center (PIII to PV). Density functional theory (DFT) calculations provide mechanistic insight into the formation of these compounds. Compounds 11-15 are blue emissive in the solution and solid states with absolute quantum yields (ΦF) ranging from 12 to 68%.

6.
J Am Chem Soc ; 145(39): 21475-21482, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738168

ABSTRACT

Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2-3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites.

7.
J Mater Chem C Mater ; 11(40): 13740-13751, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38855717

ABSTRACT

Boron-nitrogen-containing heterocycles with extended conjugated π-systems such as polycyclic aromatic 1,2-azaborines, hold the fascination of organic chemists due to their unique optoelectronic properties. However, the majority of polycyclic aromatic 1,2-azaborines aggregate at high concentrations or in the solid-state, resulting in aggregation-caused quenching (ACQ) of emission. This practical limitation poses significant challenges for polycyclic aromatic 1,2-azaborines' use in many applications. Additionally, only a few solvatochromic polycyclic aromatic 1,2-azaborines have been reported and they all display minimal solvatochromism. Therefore, the scope of available polycyclic 1,2-azaborines needs to be expanded to include those displaying fluorescence at high concentration and in the solid-state as well as those that exhibit significant changes in emission intensity in various solvents due to different polarities. To address the ACQ issue, we evaluate the effect of a pre-twisted molecular geometry on the optoelectronic properties of polycyclic aromatic 1,2-azaborines. Specifically, three phenyl-substituted pyrrolidinone-fused 1,2-azaborines (PFAs) with similar structures and functionalized with diverse electronic moieties (-H, -NO2, -CN, referred to as PFA 1, 2, and 3, respectively) were experimentally and computationally studied. Interestingly, PFA 2 displays two distinct emission properties: 1) solvatochromism, in which its emission and quantum yields are tunable with respect to solvent polarity, and 2) fluorescence that can be completely "turned off" and "turned on" via aggregation-induced emission (AIE). This report provides the first example of a polycyclic aromatic 1,2-azaborine that displays both AIE and solvatochromism properties in a single BN-substituted backbone. According to time-dependent density function theory (TD-DFT) calculations, the fluorescence properties of PFA 2 can be explained by the presence of a low-lying n-π* charge transfer state inaccessible to PFA 1 or PFA 3. These findings will help in the design of future polycyclic aromatic 1,2-azaborines that are solvatochromic and AIE-active as well as in understanding how molecular geometry affects these compounds' optoelectronic properties.

8.
Angew Chem Int Ed Engl ; 61(23): e202202516, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35289046

ABSTRACT

Borepin, a 7-membered boron-containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron-deficient borepins are well-established, reduced electron-rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a, 2 b) and anion (3 a, 3 b) complexes, which have been synthesized by potassium graphite (KC8 ) reduction of cyclic(alkyl)(amino) carbene-dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X-ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory.

9.
J Am Chem Soc ; 144(1): 590-598, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35016509

ABSTRACT

Borenium ions, originally synthesized as fundamentally important laboratory curiosities, have attracted significant attention due to their applications in catalysis and frustrated Lewis pair chemistry. However, investigations of the materials properties of these types of compounds are exceptionally rare. Herein, we report the synthesis, molecular structures, and optical properties of a new class of air-stable borenium ions, stabilized by the strongly donating carbodicarbene (CDC) ligand (2, 3, 6). Notably, CDC-borafluorenium ions exhibit thermoluminescence in solution, a result of a twisted intramolecular charge transfer process. The temperature responsiveness, which is observable by the naked eye, is assessed over a 20 to -60 °C range. Significantly, compound 2 emits white light at lower temperatures. In the solid state, these borocations exhibit increased quantum yields due to aggregation-induced emission. CDC-borafluorenium ions with two different counteranions (Br-, BPh4-) were investigated to evaluate the effect of anion size on the solution and solid-state optical properties. In addition, CDCs containing both symmetrical and unsymmetrical N-heterocycles (bis(1-isopropyl-3-methylbenzimidazol-2-ylidene)methane and bis(1,3-dimethyl-1,3-dihydro-2H-benzo[d]imidazol-2-ylidene)methane) were tested to understand the implications of free rotation about the CDC ligand carbon-carbon bonds. The experimental work is complemented by a comprehensive theoretical analysis of the excited-state dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...