Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 46(7): 3449-55, 1986 Jul.
Article in English | MEDLINE | ID: mdl-3486711

ABSTRACT

The rate of nucleoside transport decreased profoundly in human promyelocytic leukemia HL-60 cells after myeloid differentiation was induced by 5-6 days of exposure to 0.8% N,N-dimethylformamide (DMF). The facilitated diffusion of 100 microM radiolabeled adenosine and 2'-deoxyadenosine, measured by rapid transport assays, decreased 10- to 20-fold. The transport of 2 microM coformycin or 2'-deoxycoformycin, which is mediated by the same mechanism and was monitored by the adenosine deaminase titration assay, decreased 29-fold. The reduction in nucleoside transport capacity after DMF treatment was confirmed by a 19-fold decrease in the number of specific binding sites per cell (from 24-30 X 10(4) to 1.2-1.7 X 10(4)) for [3H]-6-p-nitrobenzylthioinosine, a nucleoside transport inhibitor. The binding affinity of 6-p-nitrobenzylthioinosine was not altered significantly and nucleoside transport remained sensitive to the transport inhibitors, 6-p-nitrobenzylthioinosine, dipyridamole, and dilazep after DMF-induced maturation. Time-dependence studies showed that the rate of 100 microM deoxyadenosine transport was unchanged for the first 24 h of exposure to DMF but fell to about 36% of control rates at 24-26 h and then gradually decreased further to about 4-5% of control rates after 5-6 days. In contrast, transport rates of the purine bases were reduced only 2- to 3-fold in HL-60 cells after 5 days of DMF treatment. The rates of adenosine and deoxyadenosine transport were unchanged or reduced by no more than 2-fold after 5-6 days of exposure to 0.8% DMF in the following human tumor cell lines that are not inducible with DMF: ARH-77 (multiple myeloma), KG-1 (acute myelogenous), and K-562 (chronic myelogenous). Thus, changes in nucleoside transport may serve as an early, membrane-associated marker of differentiation of the HL-60 cell line.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Nucleosides/metabolism , Adenosine/metabolism , Adenosine Deaminase Inhibitors , Cell Differentiation/drug effects , Cell Line , Coformycin/analogs & derivatives , Coformycin/metabolism , Deoxyadenosines/metabolism , Dimethylformamide/pharmacology , Humans , Leukemia, Myeloid, Acute/pathology , Pentostatin , Purines/metabolism , Thioinosine/analogs & derivatives , Thioinosine/metabolism
2.
Biochem Biophys Res Commun ; 126(1): 143-9, 1985 Jan 16.
Article in English | MEDLINE | ID: mdl-2982366

ABSTRACT

Arachidonic acid metabolism via the lipoxygenase pathway was examined in HL-60 cells before and after N,N-dimethylformamide induced differentiation along granulocytic lines. Untreated HL-60 cells produced small amounts of the 5-lipoxygenase products, 5-hydroxy-eicosatetraenoic acid and leukotriene B4 upon stimulation with calcium ionophore A23187. N,N-dimethylformamide treatment, caused a 10 to 20 fold increase in the amount of ionophore A23187-induced 5-lipoxygenase metabolites. An additional, and as yet unidentified arachidonic acid metabolite was routinely observed during reverse-phase high pressure liquid chromatography analyses of lipoxygenase products. Sensitivity to inhibition by less than 10(-7)M indomethacin coupled with other characteristics of its production, strongly suggest the compound is a cyclooxygenase product. The unusual UV absorbance and chromatographic elution pattern, however, suggest that it is not a typical prostaglandin, thromboxane or prostacyclin product.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Arachidonate Lipoxygenases , Arachidonic Acid , Arachidonic Acids/metabolism , Calcimycin/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Humans , Hydroxyeicosatetraenoic Acids/metabolism , Leukotriene B4/metabolism , Lipoxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...