Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(21): 4812-4819, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26195137

ABSTRACT

The IC50 of a beta-secretase (BACE-1) lead compound was improved ∼200-fold from 11 µM to 55 nM through the addition of a single methyl group. Computational chemistry, small molecule NMR, and protein crystallography capabilities were used to compare the solution conformation of the ligand under varying pH conditions to its conformation when bound in the active site. Chemical modification then explored available binding pockets adjacent to the ligand. A strategically placed methyl group not only maintained the required pKa of the piperidine nitrogen and filled a small hydrophobic pocket, but more importantly, stabilized the conformation best suited for optimized binding to the receptor.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Hydantoins/chemistry , Hydantoins/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Hydantoins/chemical synthesis , Methylation , Models, Molecular , Molecular Structure , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 328(1): 131-40, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18854490

ABSTRACT

beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/cerebrospinal fluid , Amyloid beta-Protein Precursor/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Humans , Infusions, Intravenous , Macaca mulatta , Mice , Mice, Transgenic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...