Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961193

ABSTRACT

Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection - female choice and male-male competition - work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a 'song' that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes - P1a and pC1x neurons - are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.

2.
Cell ; 186(7): 1369-1381.e17, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001501

ABSTRACT

Memories initially formed in hippocampus gradually stabilize to cortex over weeks-to-months for long-term storage. The mechanistic details of this brain re-organization remain poorly understood. We recorded bulk neural activity in circuits that link hippocampus and cortex as mice performed a memory-guided virtual-reality task over weeks. We identified a prominent and sustained neural correlate of memory in anterior thalamus, whose inhibition substantially disrupted memory consolidation. More strikingly, gain amplification enhanced consolidation of otherwise unconsolidated memories. To gain mechanistic insights, we developed a technology for simultaneous cellular-resolution imaging of hippocampus, thalamus, and cortex throughout consolidation. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus preferentially encodes salient memories, and gradually increases correlations with cortex to facilitate tuning and synchronization of cortical ensembles. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer-term cortical storage.


Subject(s)
Memory Consolidation , Memory, Long-Term , Mice , Animals , Memory, Long-Term/physiology , Thalamus/physiology , Hippocampus/physiology , Memory Consolidation/physiology , Brain
3.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747720

ABSTRACT

Memories initially formed in hippocampus gradually stabilize to cortex, over weeks-to-months, for long-term storage. The mechanistic details of this brain re-organization process remain poorly understood. In this study, we developed a virtual-reality based behavioral task and observed neural activity patterns associated with memory reorganization and stabilization over weeks-long timescales. Initial photometry recordings in circuits that link hippocampus and cortex revealed a unique and prominent neural correlate of memory in anterior thalamus that emerged in training and persisted for several weeks. Inhibition of the anteromedial thalamus-to-anterior cingulate cortex projections during training resulted in substantial memory consolidation deficits, and gain amplification more strikingly, was sufficient to enhance consolidation of otherwise unconsolidated memories. To provide mechanistic insights, we developed a new behavioral task where mice form two memories, of which only the more salient memory is consolidated, and also a technology for simultaneous and longitudinal cellular resolution imaging of hippocampus, thalamus, and cortex throughout the consolidation window. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus forms preferential tuning to salient memories, and establishes inter-regional correlations with cortex, that are critical for synchronizing and stabilizing cortical representations at remote time. Indeed, inhibition of this thalamo-cortical circuit while imaging in cortex reveals loss of contextual tuning and ensemble synchrony in anterior cingulate, together with behavioral deficits in remote memory retrieval. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer term cortical storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...